为什么绝热量子退火不可能产生加速

Aaron Villanueva, Peyman Najafi, Hilbert Kappen
{"title":"为什么绝热量子退火不可能产生加速","authors":"Aaron Villanueva, Peyman Najafi, Hilbert Kappen","doi":"10.1088/1751-8121/ad0439","DOIUrl":null,"url":null,"abstract":"Abstract We study quantum annealing for combinatorial optimization with Hamiltonian $H = H_0 + z H_f$ where $H_f$ is diagonal, $H_0=-\\ket{\\phi}\\bra{\\phi}$ is the equal superposition state projector and $z$ the annealing parameter.
We analytically compute the minimal spectral gap, which is $\\Omega(1/\\sqrt{N})$ with $N$ the total number of states, and its location $z_*$.
We show that quantum speed-up requires an annealing schedule which demands a precise knowledge of $z_*$, which can be computed only if the density of states of the optimization problem is known.
However, in general the density of states is intractable to compute, making quadratic speed-up unfeasible for any practical combinatorial optimization problems. 
We conjecture that it is likely that this negative result also applies for any other instance independent transverse Hamiltonians such as $H_0 = -\\sum_{i=1}^n \\sigma_i^x$.","PeriodicalId":16785,"journal":{"name":"Journal of Physics A","volume":"31 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Why adiabatic quantum annealing is unlikely to yield speed-up\",\"authors\":\"Aaron Villanueva, Peyman Najafi, Hilbert Kappen\",\"doi\":\"10.1088/1751-8121/ad0439\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract We study quantum annealing for combinatorial optimization with Hamiltonian $H = H_0 + z H_f$ where $H_f$ is diagonal, $H_0=-\\\\ket{\\\\phi}\\\\bra{\\\\phi}$ is the equal superposition state projector and $z$ the annealing parameter.
We analytically compute the minimal spectral gap, which is $\\\\Omega(1/\\\\sqrt{N})$ with $N$ the total number of states, and its location $z_*$.
We show that quantum speed-up requires an annealing schedule which demands a precise knowledge of $z_*$, which can be computed only if the density of states of the optimization problem is known.
However, in general the density of states is intractable to compute, making quadratic speed-up unfeasible for any practical combinatorial optimization problems. 
We conjecture that it is likely that this negative result also applies for any other instance independent transverse Hamiltonians such as $H_0 = -\\\\sum_{i=1}^n \\\\sigma_i^x$.\",\"PeriodicalId\":16785,\"journal\":{\"name\":\"Journal of Physics A\",\"volume\":\"31 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-10-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Physics A\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1088/1751-8121/ad0439\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Physics A","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/1751-8121/ad0439","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

摘要:利用hamilton量$H = H_0 + z H_f$ ($H_f$为对角线,$H_0=-\ket{\phi}\bra{\phi}$为等叠加态投影,$z$为退火参数)对组合优化中的量子退火进行了研究。
以$N$为总态数,解析计算最小谱隙$\Omega(1/\sqrt{N})$。和它的位置$z_*$ .
我们表明量子加速需要一个退火计划,它需要一个精确的知识$z_*$,只有在优化问题的状态密度已知的情况下才能计算。
然而,通常状态密度难以计算,使得二次加速对于任何实际的组合优化问题都是不可行的。我们推测,这一否定结果很可能也适用于任何其他独立的横向哈密顿量,如$H_0 = -\sum_{i=1}^n \sigma_i^x$。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Why adiabatic quantum annealing is unlikely to yield speed-up
Abstract We study quantum annealing for combinatorial optimization with Hamiltonian $H = H_0 + z H_f$ where $H_f$ is diagonal, $H_0=-\ket{\phi}\bra{\phi}$ is the equal superposition state projector and $z$ the annealing parameter.
We analytically compute the minimal spectral gap, which is $\Omega(1/\sqrt{N})$ with $N$ the total number of states, and its location $z_*$.
We show that quantum speed-up requires an annealing schedule which demands a precise knowledge of $z_*$, which can be computed only if the density of states of the optimization problem is known.
However, in general the density of states is intractable to compute, making quadratic speed-up unfeasible for any practical combinatorial optimization problems. 
We conjecture that it is likely that this negative result also applies for any other instance independent transverse Hamiltonians such as $H_0 = -\sum_{i=1}^n \sigma_i^x$.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信