扭曲群C*-代数的局部等分假设

Pub Date : 2023-10-17 DOI:10.1007/s00233-023-10392-9
Becky Armstrong, Jonathan H. Brown, Lisa Orloff Clark, Kristin Courtney, Ying-Fen Lin, Kathryn McCormick, Jacqui Ramagge
{"title":"扭曲群C*-代数的局部等分假设","authors":"Becky Armstrong, Jonathan H. Brown, Lisa Orloff Clark, Kristin Courtney, Ying-Fen Lin, Kathryn McCormick, Jacqui Ramagge","doi":"10.1007/s00233-023-10392-9","DOIUrl":null,"url":null,"abstract":"Abstract In this note, we present criteria that are equivalent to a locally compact Hausdorff groupoid G being effective. One of these conditions is that G satisfies the C*-algebraic local bisection hypothesis ; that is, that every normaliser in the reduced twisted groupoid C*-algebra is supported on an open bisection. The semigroup of normalisers plays a fundamental role in our proof, as does the semigroup of normalisers in cyclic group C*-algebras.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The local bisection hypothesis for twisted groupoid C*-algebras\",\"authors\":\"Becky Armstrong, Jonathan H. Brown, Lisa Orloff Clark, Kristin Courtney, Ying-Fen Lin, Kathryn McCormick, Jacqui Ramagge\",\"doi\":\"10.1007/s00233-023-10392-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract In this note, we present criteria that are equivalent to a locally compact Hausdorff groupoid G being effective. One of these conditions is that G satisfies the C*-algebraic local bisection hypothesis ; that is, that every normaliser in the reduced twisted groupoid C*-algebra is supported on an open bisection. The semigroup of normalisers plays a fundamental role in our proof, as does the semigroup of normalisers in cyclic group C*-algebras.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2023-10-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s00233-023-10392-9\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s00233-023-10392-9","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

摘要本文给出了等价于局部紧化Hausdorff群G有效的判据。其中一个条件是G满足C*-代数局部对分假设;即,约化扭曲群C*-代数中的每一个归一化数在开对分上都是被支持的。正则化半群在我们的证明中起着重要的作用,就像循环群C*-代数中的正则化半群一样。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
The local bisection hypothesis for twisted groupoid C*-algebras
Abstract In this note, we present criteria that are equivalent to a locally compact Hausdorff groupoid G being effective. One of these conditions is that G satisfies the C*-algebraic local bisection hypothesis ; that is, that every normaliser in the reduced twisted groupoid C*-algebra is supported on an open bisection. The semigroup of normalisers plays a fundamental role in our proof, as does the semigroup of normalisers in cyclic group C*-algebras.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信