非反应环境下用压力旋流雾化器表征水乳化柴油喷雾场

IF 1.4 4区 工程技术 Q3 ENGINEERING, MECHANICAL
Baha Suleiman, Hatem Selim, Alaaeldin Dawood, Jinkwan Song, Jongguen Lee, Abdurrahman Alkhalidi, Kamal M. AlAhmadi, Ibrahim A. AlGhamdi, Eid Badr, Mohammed Al-Gahatani
{"title":"非反应环境下用压力旋流雾化器表征水乳化柴油喷雾场","authors":"Baha Suleiman, Hatem Selim, Alaaeldin Dawood, Jinkwan Song, Jongguen Lee, Abdurrahman Alkhalidi, Kamal M. AlAhmadi, Ibrahim A. AlGhamdi, Eid Badr, Mohammed Al-Gahatani","doi":"10.1115/1.4063778","DOIUrl":null,"url":null,"abstract":"Abstract Employing a mixture or an emulsion of water and diesel fuel is considered a way to reduce gas emissions such as NOx and soot in a gas turbine. This study presents detailed experimental results on the spray characteristics of a water-diesel emulsion injected by a pressure swirl atomizer with a 90-degree spray angle and a flow number of 0.58 under a non-reacting environment at high pressure and temperature conditions. Acquiring this data is a key step when configuring a combustor that will employ emulsified fuels. In addition, this study seeks to confirm that the emulsion stays intact when it gets sprayed into the combustor. Furthermore, this study attempts to understand if a water-diesel emulsion prepared by a sonicator improves fuel atomization as compared to a water-diesel mixture prepared by a static mixer, i.e., not a proper emulsion. Tests are conducted in a high pressure and temperature testing facility at two ambient pressures and three ambient temperatures and water to diesel ratio (W/D) is varied from 11% to 100% by mass. Phase Doppler Particle Anemometry (PDPA) is employed to measure the spray characteristics. Through a backlit high-speed photography, overall spray patterns over different test conditions are visualized. Mie-scattering and planar laser-induced fluorescence imaging are utilized to visualize the mixture field. In general, the results indicate that emulsion stays intact as it gets sprayed into the combustor; and emulsion is a better solution to reduce emissions than a statically mixed mixture.","PeriodicalId":15685,"journal":{"name":"Journal of Engineering for Gas Turbines and Power-transactions of The Asme","volume":null,"pages":null},"PeriodicalIF":1.4000,"publicationDate":"2023-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Characterization of Spray Field for Water-Emulsified Diesel Using a Pressure Swirl Atomizer Under a Non-Reacting Environment\",\"authors\":\"Baha Suleiman, Hatem Selim, Alaaeldin Dawood, Jinkwan Song, Jongguen Lee, Abdurrahman Alkhalidi, Kamal M. AlAhmadi, Ibrahim A. AlGhamdi, Eid Badr, Mohammed Al-Gahatani\",\"doi\":\"10.1115/1.4063778\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Employing a mixture or an emulsion of water and diesel fuel is considered a way to reduce gas emissions such as NOx and soot in a gas turbine. This study presents detailed experimental results on the spray characteristics of a water-diesel emulsion injected by a pressure swirl atomizer with a 90-degree spray angle and a flow number of 0.58 under a non-reacting environment at high pressure and temperature conditions. Acquiring this data is a key step when configuring a combustor that will employ emulsified fuels. In addition, this study seeks to confirm that the emulsion stays intact when it gets sprayed into the combustor. Furthermore, this study attempts to understand if a water-diesel emulsion prepared by a sonicator improves fuel atomization as compared to a water-diesel mixture prepared by a static mixer, i.e., not a proper emulsion. Tests are conducted in a high pressure and temperature testing facility at two ambient pressures and three ambient temperatures and water to diesel ratio (W/D) is varied from 11% to 100% by mass. Phase Doppler Particle Anemometry (PDPA) is employed to measure the spray characteristics. Through a backlit high-speed photography, overall spray patterns over different test conditions are visualized. Mie-scattering and planar laser-induced fluorescence imaging are utilized to visualize the mixture field. In general, the results indicate that emulsion stays intact as it gets sprayed into the combustor; and emulsion is a better solution to reduce emissions than a statically mixed mixture.\",\"PeriodicalId\":15685,\"journal\":{\"name\":\"Journal of Engineering for Gas Turbines and Power-transactions of The Asme\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2023-10-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Engineering for Gas Turbines and Power-transactions of The Asme\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/1.4063778\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Engineering for Gas Turbines and Power-transactions of The Asme","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/1.4063778","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

摘要

摘要采用水和柴油的混合物或乳化液被认为是减少燃气轮机中氮氧化物和煤烟等气体排放的一种方法。在高压、高温条件下,采用90度喷角、流量为0.58的压力旋流雾化器,对水柴油乳化液在非反应环境下的喷雾特性进行了详细的实验研究。在配置使用乳化燃料的燃烧器时,获取这些数据是关键的一步。此外,这项研究还试图证实,当乳剂被喷进燃烧室时,它是否完好无损。此外,本研究试图了解与静态混合器制备的水-柴油混合物相比,由声纳制备的水-柴油乳液是否能改善燃料雾化,即不是适当的乳液。试验在高压和高温试验设施中进行,在两种环境压力和三种环境温度下进行,水柴油比(W/D)从11%到100%不等。采用相位多普勒粒子风速法(PDPA)测量喷雾特性。通过背光高速摄影,可以看到不同测试条件下的整体喷雾模式。利用米散射和平面激光诱导荧光成像对混合场进行可视化。总的来说,结果表明,乳液在喷入燃烧室时保持完整;乳剂是一种比静态混合液更好的减排方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Characterization of Spray Field for Water-Emulsified Diesel Using a Pressure Swirl Atomizer Under a Non-Reacting Environment
Abstract Employing a mixture or an emulsion of water and diesel fuel is considered a way to reduce gas emissions such as NOx and soot in a gas turbine. This study presents detailed experimental results on the spray characteristics of a water-diesel emulsion injected by a pressure swirl atomizer with a 90-degree spray angle and a flow number of 0.58 under a non-reacting environment at high pressure and temperature conditions. Acquiring this data is a key step when configuring a combustor that will employ emulsified fuels. In addition, this study seeks to confirm that the emulsion stays intact when it gets sprayed into the combustor. Furthermore, this study attempts to understand if a water-diesel emulsion prepared by a sonicator improves fuel atomization as compared to a water-diesel mixture prepared by a static mixer, i.e., not a proper emulsion. Tests are conducted in a high pressure and temperature testing facility at two ambient pressures and three ambient temperatures and water to diesel ratio (W/D) is varied from 11% to 100% by mass. Phase Doppler Particle Anemometry (PDPA) is employed to measure the spray characteristics. Through a backlit high-speed photography, overall spray patterns over different test conditions are visualized. Mie-scattering and planar laser-induced fluorescence imaging are utilized to visualize the mixture field. In general, the results indicate that emulsion stays intact as it gets sprayed into the combustor; and emulsion is a better solution to reduce emissions than a statically mixed mixture.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.80
自引率
20.00%
发文量
292
审稿时长
2.0 months
期刊介绍: The ASME Journal of Engineering for Gas Turbines and Power publishes archival-quality papers in the areas of gas and steam turbine technology, nuclear engineering, internal combustion engines, and fossil power generation. It covers a broad spectrum of practical topics of interest to industry. Subject areas covered include: thermodynamics; fluid mechanics; heat transfer; and modeling; propulsion and power generation components and systems; combustion, fuels, and emissions; nuclear reactor systems and components; thermal hydraulics; heat exchangers; nuclear fuel technology and waste management; I. C. engines for marine, rail, and power generation; steam and hydro power generation; advanced cycles for fossil energy generation; pollution control and environmental effects.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信