孙德班红树林耐盐促生杆菌缓解盐胁迫对珍珠粟(Pennisetum glaucum L.)的影响增长

Q4 Veterinary
None Pallavi, Rohit Kumar Mishra, Ajit Varma, Neeraj Shrivastava, Swati Tripathi
{"title":"孙德班红树林耐盐促生杆菌缓解盐胁迫对珍珠粟(Pennisetum glaucum L.)的影响增长","authors":"None Pallavi, Rohit Kumar Mishra, Ajit Varma, Neeraj Shrivastava, Swati Tripathi","doi":"10.18006/2023.11(4).746.755","DOIUrl":null,"url":null,"abstract":"Pearl millet (Pennisetum glaucum L.) is one of the major crops in dry and saline areas across the globe. During salinity stress, plants encounter significant changes in their physio and biochemical activities, leading to decreased growth and yield. Bacillus species are used as biofertilizers and biopesticides for pearl millet and other crops to promote growth and yield. The use of Bacillus in saline soils has been beneficial to combat the negative effect of salinity on plant growth and yield. In this context, the present study emphasizes the use of two Bacillus species, i.e. Bacillus megaterium JR-12 and B. pumilus GN-5, which helped in alleviating the impact of salinity stress on the growth activities in salt-stressed pearl millet. Pearl millet seeds were treated with two strains, B. megaterium JR-12 and B.pumilus GN-5, individually and in combination under 50, 100 and 150 mM of sodium chloride stress. The treated plants showed higher plant height, biomass accumulation, and photosynthetic apparatus than the non-treated plants. Additionally, the treated plants showed increased osmoprotectant levels under salinity stress compared to control plants. The antioxidant enzyme content was improved post-inoculation, indicating the efficient stress-alleviating potential of both strains of Bacillus species. Moreover, inoculation of these microbes significantly increased plant growth attributes in plants treated with a combination of Bp-GN-5 + Bm-JR-12 and the reduction rates of plant growth were found to be alleviated to 9.12%, 20.30% and 33%, respectively. Overall, the results of the present study suggested that these microbes could have a higher potential to improve the productivity of pearl millet under salinity stress.","PeriodicalId":15766,"journal":{"name":"Journal of Experimental Biology and Agricultural Sciences","volume":"2015 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Halotolerant Plant Growth Promoting Bacilli from Sundarban Mangrove Mitigate the Effects of Salinity Stress on Pearl Millet (Pennisetum glaucum L.) Growth\",\"authors\":\"None Pallavi, Rohit Kumar Mishra, Ajit Varma, Neeraj Shrivastava, Swati Tripathi\",\"doi\":\"10.18006/2023.11(4).746.755\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Pearl millet (Pennisetum glaucum L.) is one of the major crops in dry and saline areas across the globe. During salinity stress, plants encounter significant changes in their physio and biochemical activities, leading to decreased growth and yield. Bacillus species are used as biofertilizers and biopesticides for pearl millet and other crops to promote growth and yield. The use of Bacillus in saline soils has been beneficial to combat the negative effect of salinity on plant growth and yield. In this context, the present study emphasizes the use of two Bacillus species, i.e. Bacillus megaterium JR-12 and B. pumilus GN-5, which helped in alleviating the impact of salinity stress on the growth activities in salt-stressed pearl millet. Pearl millet seeds were treated with two strains, B. megaterium JR-12 and B.pumilus GN-5, individually and in combination under 50, 100 and 150 mM of sodium chloride stress. The treated plants showed higher plant height, biomass accumulation, and photosynthetic apparatus than the non-treated plants. Additionally, the treated plants showed increased osmoprotectant levels under salinity stress compared to control plants. The antioxidant enzyme content was improved post-inoculation, indicating the efficient stress-alleviating potential of both strains of Bacillus species. Moreover, inoculation of these microbes significantly increased plant growth attributes in plants treated with a combination of Bp-GN-5 + Bm-JR-12 and the reduction rates of plant growth were found to be alleviated to 9.12%, 20.30% and 33%, respectively. Overall, the results of the present study suggested that these microbes could have a higher potential to improve the productivity of pearl millet under salinity stress.\",\"PeriodicalId\":15766,\"journal\":{\"name\":\"Journal of Experimental Biology and Agricultural Sciences\",\"volume\":\"2015 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-08-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Experimental Biology and Agricultural Sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.18006/2023.11(4).746.755\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Veterinary\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Experimental Biology and Agricultural Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18006/2023.11(4).746.755","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Veterinary","Score":null,"Total":0}
引用次数: 0

摘要

珍珠粟(Pennisetum glaucum L.)是全球干旱和盐碱地的主要作物之一。在盐胁迫下,植物的生理生化活动发生显著变化,导致生长和产量下降。芽孢杆菌被用作珍珠粟和其他作物的生物肥料和生物农药,以促进生长和产量。在盐渍土壤中施用芽孢杆菌有利于克服盐渍对植物生长和产量的负面影响。在此背景下,本研究强调利用两种芽孢杆菌(Bacillus megaterium JR-12和B. pumilus GN-5)来缓解盐胁迫对盐胁迫珍珠粟生长活性的影响。以大芽孢杆菌JR-12和小芽孢杆菌GN-5两种菌种分别和组合处理珍珠粟种子,分别在50、100和150 mM氯化钠胁迫下处理。处理植株的株高、生物量积累和光合器官均高于未处理植株。此外,与对照植株相比,处理植株在盐度胁迫下的渗透保护剂水平有所提高。接种后抗氧化酶含量显著提高,表明两株芽孢杆菌具有有效的抗逆性。在Bp-GN-5 + Bm-JR-12组合处理的植株中,接种这些微生物显著提高了植株的生长性状,对植株生长的抑制率分别为9.12%、20.30%和33%。综上所述,这些微生物具有提高盐胁迫下珍珠粟产量的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Halotolerant Plant Growth Promoting Bacilli from Sundarban Mangrove Mitigate the Effects of Salinity Stress on Pearl Millet (Pennisetum glaucum L.) Growth
Pearl millet (Pennisetum glaucum L.) is one of the major crops in dry and saline areas across the globe. During salinity stress, plants encounter significant changes in their physio and biochemical activities, leading to decreased growth and yield. Bacillus species are used as biofertilizers and biopesticides for pearl millet and other crops to promote growth and yield. The use of Bacillus in saline soils has been beneficial to combat the negative effect of salinity on plant growth and yield. In this context, the present study emphasizes the use of two Bacillus species, i.e. Bacillus megaterium JR-12 and B. pumilus GN-5, which helped in alleviating the impact of salinity stress on the growth activities in salt-stressed pearl millet. Pearl millet seeds were treated with two strains, B. megaterium JR-12 and B.pumilus GN-5, individually and in combination under 50, 100 and 150 mM of sodium chloride stress. The treated plants showed higher plant height, biomass accumulation, and photosynthetic apparatus than the non-treated plants. Additionally, the treated plants showed increased osmoprotectant levels under salinity stress compared to control plants. The antioxidant enzyme content was improved post-inoculation, indicating the efficient stress-alleviating potential of both strains of Bacillus species. Moreover, inoculation of these microbes significantly increased plant growth attributes in plants treated with a combination of Bp-GN-5 + Bm-JR-12 and the reduction rates of plant growth were found to be alleviated to 9.12%, 20.30% and 33%, respectively. Overall, the results of the present study suggested that these microbes could have a higher potential to improve the productivity of pearl millet under salinity stress.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Experimental Biology and Agricultural Sciences
Journal of Experimental Biology and Agricultural Sciences Agricultural and Biological Sciences-Agricultural and Biological Sciences (all)
CiteScore
1.00
自引率
0.00%
发文量
127
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信