高分子-天然纤维复合材料在义齿中的力学与数值分析

IF 1 Q4 MATERIALS SCIENCE, COMPOSITES
Wassan S. Hussain, Qahtan A. Hamad, Jawad K. Oleiwi
{"title":"高分子-天然纤维复合材料在义齿中的力学与数值分析","authors":"Wassan S. Hussain, Qahtan A. Hamad, Jawad K. Oleiwi","doi":"10.18280/rcma.330404","DOIUrl":null,"url":null,"abstract":"Removable complete dentures are still a therapy of choice for a variety of medical professionals and patients even in an era of implant and fix prostheses. This article focuses on comparing complete dentures manufactured using various denture base materials. Heat-cured polymethylmethacrylate, used for prosthetic complete denture composites, was blended separately with Polyamide (PA) type 6 and Polyvinylpyrrolidone (PVP) type K30. These blends were prepared with various weight fractions (0%, 2%, 4%, and 6%) and reinforced with sisal and coconut powders, each added individually with varying weight fractions (2%, 4%, and 6%). The tensile test was carried out to achieve tensile strength, modulus of elasticity, and elongation percentage values. The numerical part depends on the Finite Element Method (FEM), conducted by using Ansys Workbench-2020 R2. According to the experimental data, the tensile strength, elastic modulus, and elongation of polymer blends increase at a 2% weight fraction of PA and PVP particles, and then decrease with higher PA and PVP particles' weight fraction. However, they decrease with increasing weight fraction of coconut and sisal particles. The highest tensile strength and elastic modulus are 86 MPa and 2.531 GPa, respectively, for PMMA-2% PA, and the greatest elongation percentage is 5.28% for PMMA-2% PVP. These findings lead to the conclusion that the addition of polymer blend materials to PMMA resin is a promising approach for improving tensile properties in applications such as complete or partial denture bases, addressing an ongoing challenge","PeriodicalId":42458,"journal":{"name":"Revue des Composites et des Materiaux Avances-Journal of Composite and Advanced Materials","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2023-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Mechanical and Numerical Analysis of Polymer-Natural Fiber Composites for Denture Applications\",\"authors\":\"Wassan S. Hussain, Qahtan A. Hamad, Jawad K. Oleiwi\",\"doi\":\"10.18280/rcma.330404\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Removable complete dentures are still a therapy of choice for a variety of medical professionals and patients even in an era of implant and fix prostheses. This article focuses on comparing complete dentures manufactured using various denture base materials. Heat-cured polymethylmethacrylate, used for prosthetic complete denture composites, was blended separately with Polyamide (PA) type 6 and Polyvinylpyrrolidone (PVP) type K30. These blends were prepared with various weight fractions (0%, 2%, 4%, and 6%) and reinforced with sisal and coconut powders, each added individually with varying weight fractions (2%, 4%, and 6%). The tensile test was carried out to achieve tensile strength, modulus of elasticity, and elongation percentage values. The numerical part depends on the Finite Element Method (FEM), conducted by using Ansys Workbench-2020 R2. According to the experimental data, the tensile strength, elastic modulus, and elongation of polymer blends increase at a 2% weight fraction of PA and PVP particles, and then decrease with higher PA and PVP particles' weight fraction. However, they decrease with increasing weight fraction of coconut and sisal particles. The highest tensile strength and elastic modulus are 86 MPa and 2.531 GPa, respectively, for PMMA-2% PA, and the greatest elongation percentage is 5.28% for PMMA-2% PVP. These findings lead to the conclusion that the addition of polymer blend materials to PMMA resin is a promising approach for improving tensile properties in applications such as complete or partial denture bases, addressing an ongoing challenge\",\"PeriodicalId\":42458,\"journal\":{\"name\":\"Revue des Composites et des Materiaux Avances-Journal of Composite and Advanced Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2023-08-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Revue des Composites et des Materiaux Avances-Journal of Composite and Advanced Materials\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.18280/rcma.330404\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATERIALS SCIENCE, COMPOSITES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Revue des Composites et des Materiaux Avances-Journal of Composite and Advanced Materials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18280/rcma.330404","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, COMPOSITES","Score":null,"Total":0}
引用次数: 0

摘要

本文章由计算机程序翻译,如有差异,请以英文原文为准。
Mechanical and Numerical Analysis of Polymer-Natural Fiber Composites for Denture Applications
Removable complete dentures are still a therapy of choice for a variety of medical professionals and patients even in an era of implant and fix prostheses. This article focuses on comparing complete dentures manufactured using various denture base materials. Heat-cured polymethylmethacrylate, used for prosthetic complete denture composites, was blended separately with Polyamide (PA) type 6 and Polyvinylpyrrolidone (PVP) type K30. These blends were prepared with various weight fractions (0%, 2%, 4%, and 6%) and reinforced with sisal and coconut powders, each added individually with varying weight fractions (2%, 4%, and 6%). The tensile test was carried out to achieve tensile strength, modulus of elasticity, and elongation percentage values. The numerical part depends on the Finite Element Method (FEM), conducted by using Ansys Workbench-2020 R2. According to the experimental data, the tensile strength, elastic modulus, and elongation of polymer blends increase at a 2% weight fraction of PA and PVP particles, and then decrease with higher PA and PVP particles' weight fraction. However, they decrease with increasing weight fraction of coconut and sisal particles. The highest tensile strength and elastic modulus are 86 MPa and 2.531 GPa, respectively, for PMMA-2% PA, and the greatest elongation percentage is 5.28% for PMMA-2% PVP. These findings lead to the conclusion that the addition of polymer blend materials to PMMA resin is a promising approach for improving tensile properties in applications such as complete or partial denture bases, addressing an ongoing challenge
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.90
自引率
25.00%
发文量
32
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信