{"title":"利用短伽马射线暴约束洛伦兹不变性","authors":"Walid Jamil Azzam, Ali Mohamed Hasan","doi":"10.4236/jamp.2023.118139","DOIUrl":null,"url":null,"abstract":"Lorentz Invariance is a foundational principle in modern physics, but some recent quantum gravity theories have hinted that it may be violated at extremely high energies. Gamma-ray bursts (GRBs) provide a promising tool for checking and constraining any deviations from Lorentz Invariance due to their huge energies and cosmological distances. Gamma-ray bursts, which are the most intense and powerful explosions in the universe, are traditionally divided into long bursts whose observed duration exceeds 2 s, and short bursts whose observed duration is less than 2 s. In this study, we employ a recent sample of 46 short GRBs to check for any deviation from Lorentz Invariance. We analyze the spectral lag of the bursts in our data sample and check for any redshift dependence in the GRB rest frame, which would indicate a violation of Lorentz Invariance. Our results are consistent, to within 1σ, with no deviation from Lorentz Invariance.","PeriodicalId":15035,"journal":{"name":"Journal of Applied Mathematics and Physics","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Constraining Lorentz Invariance Violation Using Short Gamma-Ray Bursts\",\"authors\":\"Walid Jamil Azzam, Ali Mohamed Hasan\",\"doi\":\"10.4236/jamp.2023.118139\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Lorentz Invariance is a foundational principle in modern physics, but some recent quantum gravity theories have hinted that it may be violated at extremely high energies. Gamma-ray bursts (GRBs) provide a promising tool for checking and constraining any deviations from Lorentz Invariance due to their huge energies and cosmological distances. Gamma-ray bursts, which are the most intense and powerful explosions in the universe, are traditionally divided into long bursts whose observed duration exceeds 2 s, and short bursts whose observed duration is less than 2 s. In this study, we employ a recent sample of 46 short GRBs to check for any deviation from Lorentz Invariance. We analyze the spectral lag of the bursts in our data sample and check for any redshift dependence in the GRB rest frame, which would indicate a violation of Lorentz Invariance. Our results are consistent, to within 1σ, with no deviation from Lorentz Invariance.\",\"PeriodicalId\":15035,\"journal\":{\"name\":\"Journal of Applied Mathematics and Physics\",\"volume\":\"2 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Applied Mathematics and Physics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4236/jamp.2023.118139\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Mathematics and Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4236/jamp.2023.118139","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Constraining Lorentz Invariance Violation Using Short Gamma-Ray Bursts
Lorentz Invariance is a foundational principle in modern physics, but some recent quantum gravity theories have hinted that it may be violated at extremely high energies. Gamma-ray bursts (GRBs) provide a promising tool for checking and constraining any deviations from Lorentz Invariance due to their huge energies and cosmological distances. Gamma-ray bursts, which are the most intense and powerful explosions in the universe, are traditionally divided into long bursts whose observed duration exceeds 2 s, and short bursts whose observed duration is less than 2 s. In this study, we employ a recent sample of 46 short GRBs to check for any deviation from Lorentz Invariance. We analyze the spectral lag of the bursts in our data sample and check for any redshift dependence in the GRB rest frame, which would indicate a violation of Lorentz Invariance. Our results are consistent, to within 1σ, with no deviation from Lorentz Invariance.