{"title":"解释“奇怪”金属之谜","authors":"Katherine Wright","doi":"10.1103/physics.16.148","DOIUrl":null,"url":null,"abstract":"To explain the strangeness of strange metals, a new theory considers entanglement and randomness and finds that the combination of these two effects leads to nonuniform collisions between electrons. This collisional behavior produces the relatively large electrical resistance that is the hallmark of strange metals. Credit: L. Reading-Ikkanda/Simons Foundation no electrical resistance at very low temperatures, but as it gets hotter the resistance increases linearly with temperature, making it a poorer conductor than a normal metal like copper. Other properties of the material are also abnormal, including its ability to absorb heat and to transport a rapidly oscillating electrical current. “But the resistivity change is the most striking,” Patel says.","PeriodicalId":20136,"journal":{"name":"Physics","volume":"31 1","pages":"0"},"PeriodicalIF":1.5000,"publicationDate":"2023-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Mystery of “Strange” Metals Explained\",\"authors\":\"Katherine Wright\",\"doi\":\"10.1103/physics.16.148\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"To explain the strangeness of strange metals, a new theory considers entanglement and randomness and finds that the combination of these two effects leads to nonuniform collisions between electrons. This collisional behavior produces the relatively large electrical resistance that is the hallmark of strange metals. Credit: L. Reading-Ikkanda/Simons Foundation no electrical resistance at very low temperatures, but as it gets hotter the resistance increases linearly with temperature, making it a poorer conductor than a normal metal like copper. Other properties of the material are also abnormal, including its ability to absorb heat and to transport a rapidly oscillating electrical current. “But the resistivity change is the most striking,” Patel says.\",\"PeriodicalId\":20136,\"journal\":{\"name\":\"Physics\",\"volume\":\"31 1\",\"pages\":\"0\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2023-08-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1103/physics.16.148\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1103/physics.16.148","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
To explain the strangeness of strange metals, a new theory considers entanglement and randomness and finds that the combination of these two effects leads to nonuniform collisions between electrons. This collisional behavior produces the relatively large electrical resistance that is the hallmark of strange metals. Credit: L. Reading-Ikkanda/Simons Foundation no electrical resistance at very low temperatures, but as it gets hotter the resistance increases linearly with temperature, making it a poorer conductor than a normal metal like copper. Other properties of the material are also abnormal, including its ability to absorb heat and to transport a rapidly oscillating electrical current. “But the resistivity change is the most striking,” Patel says.