含鼠李糖乳杆菌的益生菌大豆酸果酸乳的生产2012

Joanitah Nanyondo, Stellah Byakika, Ivan Muzira Mukisa
{"title":"含鼠李糖乳杆菌的益生菌大豆酸果酸乳的生产2012","authors":"Joanitah Nanyondo, Stellah Byakika, Ivan Muzira Mukisa","doi":"10.24018/ejfood.2023.5.4.702","DOIUrl":null,"url":null,"abstract":"There is an increasing demand for functional food products developed from local resources. In this work, Lactobacillus (Lb.) rhamnosus yoba 2012 and Streptococcus thermophilus were used to produce a soy-soursop probiotic yogurt. Soy milk was supplemented with soursop pulp in amounts of 0%, 5%, 10%, and 15%. The mixtures were pasteurized at 85 °C for 15 s, cooled, inoculated with a starter and incubated at 45 °C for 24 h. Samples were taken at 0, 2, 4, 6 and 24 hours for analysis of pH, acidity, and Lb. rhamnosus yoba 2012 counts. Consumer acceptability and willingness to purchase were determined after 24 h of fermentation. The most acceptable sample was analyzed for nutritional composition. Lb. rhamnosus grew in the soy-soursop yogurt up to 8.1-9.3 log cfu/mL. The highest cell growth was observed in yogurt containing 5% soursop whereas the lowest was observed in yogurt containing 15% soursop. Yogurt pH reduced to 3.9-4.4, with 15% soursop having the lowest pH (p<0.05). Titratable acidity increased to 0.6%-0.9% lactic acid. All the yogurts were accepted although those containing 15% soursop had the lowest scores (5 = neither like nor dislike). There were no yeasts, molds or coliforms detected during the 21 days of cold storage (4 ℃) of all the yogurt. Therefore, adding soursop to soymilk produces a satisfactory probiotic soy-soursop yogurt.","PeriodicalId":11865,"journal":{"name":"European Journal of Agriculture and Food Sciences","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Production of a Probiotic Soy-Soursop Yogurt Containing Lactobacillus rhamnosus yoba 2012\",\"authors\":\"Joanitah Nanyondo, Stellah Byakika, Ivan Muzira Mukisa\",\"doi\":\"10.24018/ejfood.2023.5.4.702\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"There is an increasing demand for functional food products developed from local resources. In this work, Lactobacillus (Lb.) rhamnosus yoba 2012 and Streptococcus thermophilus were used to produce a soy-soursop probiotic yogurt. Soy milk was supplemented with soursop pulp in amounts of 0%, 5%, 10%, and 15%. The mixtures were pasteurized at 85 °C for 15 s, cooled, inoculated with a starter and incubated at 45 °C for 24 h. Samples were taken at 0, 2, 4, 6 and 24 hours for analysis of pH, acidity, and Lb. rhamnosus yoba 2012 counts. Consumer acceptability and willingness to purchase were determined after 24 h of fermentation. The most acceptable sample was analyzed for nutritional composition. Lb. rhamnosus grew in the soy-soursop yogurt up to 8.1-9.3 log cfu/mL. The highest cell growth was observed in yogurt containing 5% soursop whereas the lowest was observed in yogurt containing 15% soursop. Yogurt pH reduced to 3.9-4.4, with 15% soursop having the lowest pH (p<0.05). Titratable acidity increased to 0.6%-0.9% lactic acid. All the yogurts were accepted although those containing 15% soursop had the lowest scores (5 = neither like nor dislike). There were no yeasts, molds or coliforms detected during the 21 days of cold storage (4 ℃) of all the yogurt. Therefore, adding soursop to soymilk produces a satisfactory probiotic soy-soursop yogurt.\",\"PeriodicalId\":11865,\"journal\":{\"name\":\"European Journal of Agriculture and Food Sciences\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-08-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"European Journal of Agriculture and Food Sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.24018/ejfood.2023.5.4.702\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Agriculture and Food Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.24018/ejfood.2023.5.4.702","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

对利用当地资源开发的功能性食品的需求日益增加。本研究以鼠李糖乳杆菌(Lb.) 2012和嗜热链球菌为原料,制备了一种大豆酸菜益生菌酸奶。在豆浆中分别添加0%、5%、10%和15%的番荔枝果肉。混合物在85°C下巴氏灭菌15 s,冷却后用发酵剂接种,在45°C下孵育24 h。在0,2,4,6和24小时取样,分析pH,酸度和Lb. rhamnosus yoba 2012计数。发酵24 h后测定消费者的接受度和购买意愿。对最可接受的样品进行营养成分分析。鼠李糖Lb. rhamnosus在大豆酸果苷酸奶中的生长量可达8.1-9.3 log cfu/mL。在含5%酸果苷的酸奶中,细胞生长最高,而在含15%酸果苷的酸奶中,细胞生长最低。酸奶pH值降至3.9 ~ 4.4,其中15%的soursop pH值最低(p<0.05)。可滴定酸度提高至0.6%-0.9%乳酸。所有酸奶都被接受了,尽管那些含有15%酸橙的酸奶得分最低(5 =既不喜欢也不不喜欢)。所有酸奶冷藏21 d(4℃)均未检出酵母菌、霉菌和大肠菌。因此,在豆浆中加入酸豆可以产生令人满意的益生菌酸豆酸奶。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Production of a Probiotic Soy-Soursop Yogurt Containing Lactobacillus rhamnosus yoba 2012
There is an increasing demand for functional food products developed from local resources. In this work, Lactobacillus (Lb.) rhamnosus yoba 2012 and Streptococcus thermophilus were used to produce a soy-soursop probiotic yogurt. Soy milk was supplemented with soursop pulp in amounts of 0%, 5%, 10%, and 15%. The mixtures were pasteurized at 85 °C for 15 s, cooled, inoculated with a starter and incubated at 45 °C for 24 h. Samples were taken at 0, 2, 4, 6 and 24 hours for analysis of pH, acidity, and Lb. rhamnosus yoba 2012 counts. Consumer acceptability and willingness to purchase were determined after 24 h of fermentation. The most acceptable sample was analyzed for nutritional composition. Lb. rhamnosus grew in the soy-soursop yogurt up to 8.1-9.3 log cfu/mL. The highest cell growth was observed in yogurt containing 5% soursop whereas the lowest was observed in yogurt containing 15% soursop. Yogurt pH reduced to 3.9-4.4, with 15% soursop having the lowest pH (p<0.05). Titratable acidity increased to 0.6%-0.9% lactic acid. All the yogurts were accepted although those containing 15% soursop had the lowest scores (5 = neither like nor dislike). There were no yeasts, molds or coliforms detected during the 21 days of cold storage (4 ℃) of all the yogurt. Therefore, adding soursop to soymilk produces a satisfactory probiotic soy-soursop yogurt.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信