细粉气力输送过程中弯道曲率和再加速区的压降建模

IF 2.3 4区 工程技术 Q3 ENGINEERING, CHEMICAL
Atul Sharma, Rachit Poddar, Gourav Saluja, S. S. Mallick
{"title":"细粉气力输送过程中弯道曲率和再加速区的压降建模","authors":"Atul Sharma, Rachit Poddar, Gourav Saluja, S. S. Mallick","doi":"10.1080/02726351.2023.2255865","DOIUrl":null,"url":null,"abstract":"This paper presents the results of ongoing research aimed at modeling the pressure drop in bends during pneumatic conveying of fine powders. Based on the test results of conveying fly ash and two grades of cement through three different radii of curvature of the bends, two different bend diameters, and two different locations of the test bend, a semi-empirical relationship was developed for bend loss with various pressure drop components modeled separately. The newly developed model was used to predict the bend loss for a solid loading ratio in the range of 51–170 (very dense phase). The proposed model exhibited a satisfactory level of prediction accuracy, with relative error percentages of less than 12.2% and 19.6% for the high and low solids loading ratios, respectively.","PeriodicalId":19742,"journal":{"name":"Particulate Science and Technology","volume":"20 1","pages":"0"},"PeriodicalIF":2.3000,"publicationDate":"2023-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Modeling pressure drop in curvature and reacceleration zones in bends during pneumatic conveying of fine powders\",\"authors\":\"Atul Sharma, Rachit Poddar, Gourav Saluja, S. S. Mallick\",\"doi\":\"10.1080/02726351.2023.2255865\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents the results of ongoing research aimed at modeling the pressure drop in bends during pneumatic conveying of fine powders. Based on the test results of conveying fly ash and two grades of cement through three different radii of curvature of the bends, two different bend diameters, and two different locations of the test bend, a semi-empirical relationship was developed for bend loss with various pressure drop components modeled separately. The newly developed model was used to predict the bend loss for a solid loading ratio in the range of 51–170 (very dense phase). The proposed model exhibited a satisfactory level of prediction accuracy, with relative error percentages of less than 12.2% and 19.6% for the high and low solids loading ratios, respectively.\",\"PeriodicalId\":19742,\"journal\":{\"name\":\"Particulate Science and Technology\",\"volume\":\"20 1\",\"pages\":\"0\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2023-09-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Particulate Science and Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/02726351.2023.2255865\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Particulate Science and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/02726351.2023.2255865","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

摘要

本文介绍了正在进行的研究结果,旨在模拟弯道压力降在细粉的气力输送过程中。根据三种不同弯道曲率半径、两种不同弯道直径和两种不同弯道位置输送粉煤灰和两种水泥的试验结果,分别建立了不同压降分量下的弯道损失半经验关系。利用该模型对固相加载比为51 ~ 170(非常致密相)时的弯曲损失进行了预测。该模型具有较好的预测精度,高固载比和低固载比的相对误差百分比分别小于12.2%和19.6%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Modeling pressure drop in curvature and reacceleration zones in bends during pneumatic conveying of fine powders
This paper presents the results of ongoing research aimed at modeling the pressure drop in bends during pneumatic conveying of fine powders. Based on the test results of conveying fly ash and two grades of cement through three different radii of curvature of the bends, two different bend diameters, and two different locations of the test bend, a semi-empirical relationship was developed for bend loss with various pressure drop components modeled separately. The newly developed model was used to predict the bend loss for a solid loading ratio in the range of 51–170 (very dense phase). The proposed model exhibited a satisfactory level of prediction accuracy, with relative error percentages of less than 12.2% and 19.6% for the high and low solids loading ratios, respectively.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Particulate Science and Technology
Particulate Science and Technology 工程技术-工程:化工
CiteScore
4.40
自引率
4.00%
发文量
86
审稿时长
12 months
期刊介绍: Particulate Science and Technology, an interdisciplinary journal, publishes papers on both fundamental and applied science and technology related to particles and particle systems in size scales from nanometers to millimeters. The journal''s primary focus is to report emerging technologies and advances in different fields of engineering, energy, biomaterials, and pharmaceutical science involving particles, and to bring institutional researchers closer to professionals in industries. Particulate Science and Technology invites articles reporting original contributions and review papers, in particular critical reviews, that are relevant and timely to the emerging and growing fields of particle and powder technology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信