{"title":"模块类别和应用中的固体发生器","authors":"Ryo Takahashi","doi":"10.4171/rsmup/138","DOIUrl":null,"url":null,"abstract":"– Let 𝑅 be a commutative noetherian ring. Denote by mod 𝑅 the category of finitely generated 𝑅 -modules. In the present paper, we introduce the notion of solid subcategories of mod 𝑅 and investigate it. The main result of this paper not only recovers results of Schoutens, Krause and Stevenson, and Takahashi on thick subcategories, but also unifies and extends them to solid subcategories. Moreover, it provides some contributions to the study of the question asking when a thick subcategory is Serre.","PeriodicalId":20997,"journal":{"name":"Rendiconti del Seminario Matematico della Università di Padova","volume":"29 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Solid generators in module categories and applications\",\"authors\":\"Ryo Takahashi\",\"doi\":\"10.4171/rsmup/138\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"– Let 𝑅 be a commutative noetherian ring. Denote by mod 𝑅 the category of finitely generated 𝑅 -modules. In the present paper, we introduce the notion of solid subcategories of mod 𝑅 and investigate it. The main result of this paper not only recovers results of Schoutens, Krause and Stevenson, and Takahashi on thick subcategories, but also unifies and extends them to solid subcategories. Moreover, it provides some contributions to the study of the question asking when a thick subcategory is Serre.\",\"PeriodicalId\":20997,\"journal\":{\"name\":\"Rendiconti del Seminario Matematico della Università di Padova\",\"volume\":\"29 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-09-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Rendiconti del Seminario Matematico della Università di Padova\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4171/rsmup/138\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Rendiconti del Seminario Matematico della Università di Padova","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4171/rsmup/138","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Solid generators in module categories and applications
– Let 𝑅 be a commutative noetherian ring. Denote by mod 𝑅 the category of finitely generated 𝑅 -modules. In the present paper, we introduce the notion of solid subcategories of mod 𝑅 and investigate it. The main result of this paper not only recovers results of Schoutens, Krause and Stevenson, and Takahashi on thick subcategories, but also unifies and extends them to solid subcategories. Moreover, it provides some contributions to the study of the question asking when a thick subcategory is Serre.