{"title":"一种考虑地形起伏的视距划分方法","authors":"Zengjie Wang, Xiaoyu Niu, Zhenxia Liu, Wen Luo, Zhaoyuan Yu, Jiyi Zhang, Linwang Yuan","doi":"10.1080/13658816.2023.2254825","DOIUrl":null,"url":null,"abstract":"Existing intervisibility analysis methods suffer from computational inefficiency due to redundant sampling points. To address this issue, we propose a new approximate method called line-of-sight (LoS) zoning, which leverages continuous terrain relief to identify potentially obscuring zones (POZ) of LoS. By limiting the sampling range to a much smaller POZ, the number of sampling points is significantly reduced. The optimal sampling interval of 6 is determined by striking a balance between computational efficiency and accuracy. Through experiments in both mountainous and plain areas, regardless of the height range and resolution conditions, we demonstrate the high efficiency of the LoS zoning method, especially in scenarios with a high proportion of visible LoS. To account for potential visibility errors caused by sharp peaks in the terrain, we conducted experiments under fixed time intervals to assess the calculation quality of different methods. The results show that in mountainous and plain areas, the improvement in detection rate compared to the hopping strategy method is around 4–6 times in most scenarios. This significant performance enhancement highlights the superiority of the LoS zoning method, and shows great promise in terrain avoidance, path planning in the military, and detection of dangerous targets.","PeriodicalId":14162,"journal":{"name":"International Journal of Geographical Information Science","volume":"21 1","pages":"0"},"PeriodicalIF":4.3000,"publicationDate":"2023-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A line-of-sight zoning method for intervisibility computation by considering terrain relief\",\"authors\":\"Zengjie Wang, Xiaoyu Niu, Zhenxia Liu, Wen Luo, Zhaoyuan Yu, Jiyi Zhang, Linwang Yuan\",\"doi\":\"10.1080/13658816.2023.2254825\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Existing intervisibility analysis methods suffer from computational inefficiency due to redundant sampling points. To address this issue, we propose a new approximate method called line-of-sight (LoS) zoning, which leverages continuous terrain relief to identify potentially obscuring zones (POZ) of LoS. By limiting the sampling range to a much smaller POZ, the number of sampling points is significantly reduced. The optimal sampling interval of 6 is determined by striking a balance between computational efficiency and accuracy. Through experiments in both mountainous and plain areas, regardless of the height range and resolution conditions, we demonstrate the high efficiency of the LoS zoning method, especially in scenarios with a high proportion of visible LoS. To account for potential visibility errors caused by sharp peaks in the terrain, we conducted experiments under fixed time intervals to assess the calculation quality of different methods. The results show that in mountainous and plain areas, the improvement in detection rate compared to the hopping strategy method is around 4–6 times in most scenarios. This significant performance enhancement highlights the superiority of the LoS zoning method, and shows great promise in terrain avoidance, path planning in the military, and detection of dangerous targets.\",\"PeriodicalId\":14162,\"journal\":{\"name\":\"International Journal of Geographical Information Science\",\"volume\":\"21 1\",\"pages\":\"0\"},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2023-09-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Geographical Information Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/13658816.2023.2254825\",\"RegionNum\":1,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Geographical Information Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/13658816.2023.2254825","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
A line-of-sight zoning method for intervisibility computation by considering terrain relief
Existing intervisibility analysis methods suffer from computational inefficiency due to redundant sampling points. To address this issue, we propose a new approximate method called line-of-sight (LoS) zoning, which leverages continuous terrain relief to identify potentially obscuring zones (POZ) of LoS. By limiting the sampling range to a much smaller POZ, the number of sampling points is significantly reduced. The optimal sampling interval of 6 is determined by striking a balance between computational efficiency and accuracy. Through experiments in both mountainous and plain areas, regardless of the height range and resolution conditions, we demonstrate the high efficiency of the LoS zoning method, especially in scenarios with a high proportion of visible LoS. To account for potential visibility errors caused by sharp peaks in the terrain, we conducted experiments under fixed time intervals to assess the calculation quality of different methods. The results show that in mountainous and plain areas, the improvement in detection rate compared to the hopping strategy method is around 4–6 times in most scenarios. This significant performance enhancement highlights the superiority of the LoS zoning method, and shows great promise in terrain avoidance, path planning in the military, and detection of dangerous targets.
期刊介绍:
International Journal of Geographical Information Science provides a forum for the exchange of original ideas, approaches, methods and experiences in the rapidly growing field of geographical information science (GIScience). It is intended to interest those who research fundamental and computational issues of geographic information, as well as issues related to the design, implementation and use of geographical information for monitoring, prediction and decision making. Published research covers innovations in GIScience and novel applications of GIScience in natural resources, social systems and the built environment, as well as relevant developments in computer science, cartography, surveying, geography and engineering in both developed and developing countries.