广义monge - ampantere方程问题

IF 0.5 4区 数学 Q3 MATHEMATICS
Cristian Enache, Giovanni Porru
{"title":"广义monge - ampantere方程问题","authors":"Cristian Enache, Giovanni Porru","doi":"10.4153/s0008439523000656","DOIUrl":null,"url":null,"abstract":"Abstract This paper deals with some Monge–Ampère type equations involving the gradient that are elliptic in the framework of convex functions. First, we show that such equations may be obtained by minimizing a suitable functional. Moreover, we investigate a P-function associated with the solution to a boundary value problem of our generalized Monge–Ampère equation in a bounded convex domain. It will be shown that this P-function attains its maximum value on the boundary of the underlying domain. Furthermore, we show that such a P-function is actually identically constant when the underlying domain is a ball. Therefore, our result provides a best possible maximum principles in the sense of L. E. Payne. Finally, in case of dimension 2, we prove that this P-function also attains its minimum value on the boundary of the underlying domain. As an application, we will show that the solvability of a Serrin’s type overdetermined problem for our generalized Monge–Ampère type equation forces the underlying domain to be a ball.","PeriodicalId":55280,"journal":{"name":"Canadian Mathematical Bulletin-Bulletin Canadien De Mathematiques","volume":"17 1","pages":"0"},"PeriodicalIF":0.5000,"publicationDate":"2023-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Problems for generalized Monge-Ampère equations\",\"authors\":\"Cristian Enache, Giovanni Porru\",\"doi\":\"10.4153/s0008439523000656\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract This paper deals with some Monge–Ampère type equations involving the gradient that are elliptic in the framework of convex functions. First, we show that such equations may be obtained by minimizing a suitable functional. Moreover, we investigate a P-function associated with the solution to a boundary value problem of our generalized Monge–Ampère equation in a bounded convex domain. It will be shown that this P-function attains its maximum value on the boundary of the underlying domain. Furthermore, we show that such a P-function is actually identically constant when the underlying domain is a ball. Therefore, our result provides a best possible maximum principles in the sense of L. E. Payne. Finally, in case of dimension 2, we prove that this P-function also attains its minimum value on the boundary of the underlying domain. As an application, we will show that the solvability of a Serrin’s type overdetermined problem for our generalized Monge–Ampère type equation forces the underlying domain to be a ball.\",\"PeriodicalId\":55280,\"journal\":{\"name\":\"Canadian Mathematical Bulletin-Bulletin Canadien De Mathematiques\",\"volume\":\"17 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2023-09-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Canadian Mathematical Bulletin-Bulletin Canadien De Mathematiques\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4153/s0008439523000656\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Canadian Mathematical Bulletin-Bulletin Canadien De Mathematiques","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4153/s0008439523000656","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

在凸函数的框架下,研究了一类椭圆型的含有梯度的monge - ampantere型方程。首先,我们证明这样的方程可以通过最小化一个合适的泛函得到。此外,我们研究了与有界凸域上广义monge - amp方程边值问题解相关的p函数。结果表明,该p函数在基础域的边界处达到最大值。进一步,我们证明了当基础域是球时,这样的p函数实际上是相同常数。因此,我们的结果提供了L. E. Payne意义上的最佳可能最大值原则。最后,在维数为2的情况下,我们证明了该p函数在基础域的边界上也达到了最小值。作为一个应用,我们将证明Serrin型超定问题对于我们的广义monge - ampantere型方程的可解性迫使底层区域是一个球。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Problems for generalized Monge-Ampère equations
Abstract This paper deals with some Monge–Ampère type equations involving the gradient that are elliptic in the framework of convex functions. First, we show that such equations may be obtained by minimizing a suitable functional. Moreover, we investigate a P-function associated with the solution to a boundary value problem of our generalized Monge–Ampère equation in a bounded convex domain. It will be shown that this P-function attains its maximum value on the boundary of the underlying domain. Furthermore, we show that such a P-function is actually identically constant when the underlying domain is a ball. Therefore, our result provides a best possible maximum principles in the sense of L. E. Payne. Finally, in case of dimension 2, we prove that this P-function also attains its minimum value on the boundary of the underlying domain. As an application, we will show that the solvability of a Serrin’s type overdetermined problem for our generalized Monge–Ampère type equation forces the underlying domain to be a ball.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.30
自引率
0.00%
发文量
68
审稿时长
24 months
期刊介绍: The Canadian Mathematical Bulletin was established in 1958 to publish original, high-quality research papers in all branches of mathematics and to accommodate the growing demand for shorter research papers. The Bulletin is a companion publication to the Canadian Journal of Mathematics that publishes longer papers. New research papers are published continuously online and collated into print issues four times each year. To be submitted to the Bulletin, papers should be at most 18 pages long and may be written in English or in French. Longer papers should be submitted to the Canadian Journal of Mathematics. Fondé en 1958, le Bulletin canadien de mathématiques (BCM) publie des articles d’avant-garde et de grande qualité dans toutes les branches des mathématiques, de même que pour répondre à la demande croissante d’articles scientifiques plus brefs. Le BCM se veut une publication complémentaire au Journal canadien de mathématiques, qui publie de longs articles. En ligne, il propose constamment de nouveaux articles de recherche, puis les réunit dans des numéros imprimés quatre fois par année. Les textes présentés au BCM doivent compter au plus 18 pages et être rédigés en anglais ou en français. C’est le Journal canadien de mathématiques qui reçoit les articles plus longs.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信