Andreas Maier, Manuel Rühr, Marcel Stephan, Sebastian Frankl, Stephan Roth, Michael Schmidt
{"title":"单质粉末原位合金化及d - lb /M法制备双相不锈钢裁剪材料性能","authors":"Andreas Maier, Manuel Rühr, Marcel Stephan, Sebastian Frankl, Stephan Roth, Michael Schmidt","doi":"10.2351/7.0001119","DOIUrl":null,"url":null,"abstract":"Stainless steels are established in various fields with challenging environments, e.g., offshore, petrochemical, and automotive industries. The combination of high-performance properties and high-value added applications makes stainless steels attractive for additive manufacturing (AM). In powder-based AM processes such as laser-directed energy deposition (DED-LB/M), typically prealloyed powders are used for part generation. By an innovative approach called in situ alloying, the chemical composition of prealloyed powder can be adjusted by mixing it with an additional powder material. This allows the material properties to be flexibly and efficiently tailored for specific applications. In this work, a standard duplex stainless steel (DSS) is modified for the first time with elemental powders in order to systematically adjust the resulting phase formation, mechanical properties, and corrosion resistance. For this, powder mixtures were generated consisting of prealloyed DSS 1.4462 and additions of pure chromium (1.0–7.0 wt. %) or nickel (1.0–5.0 wt. %) powder. Processing them by means of DED-LB/M resulted in specimens (rel. density &gt; 99.7%) with ferrite–austenite phase ratios ranging from almost 10%:90% to 90%:10%. Increasing the chromium content successively increased the ferrite percentage, resulting in higher material hardness, higher strength, and resistance against pitting corrosion but poor ductility and toughness compared to unmodified DSS. In contrast, an increased nickel content resulted in an increased austenite formation with lower hardness and strength but increased ductility. This strategy was shown to add flexibility to powder-based AM processes by enabling an on-demand material design for stainless steels.","PeriodicalId":50168,"journal":{"name":"Journal of Laser Applications","volume":"2022 1","pages":"0"},"PeriodicalIF":1.7000,"publicationDate":"2023-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Tailoring material properties of duplex stainless steel by DED-LB/M and <i>in situ</i> alloying with elemental powders\",\"authors\":\"Andreas Maier, Manuel Rühr, Marcel Stephan, Sebastian Frankl, Stephan Roth, Michael Schmidt\",\"doi\":\"10.2351/7.0001119\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Stainless steels are established in various fields with challenging environments, e.g., offshore, petrochemical, and automotive industries. The combination of high-performance properties and high-value added applications makes stainless steels attractive for additive manufacturing (AM). In powder-based AM processes such as laser-directed energy deposition (DED-LB/M), typically prealloyed powders are used for part generation. By an innovative approach called in situ alloying, the chemical composition of prealloyed powder can be adjusted by mixing it with an additional powder material. This allows the material properties to be flexibly and efficiently tailored for specific applications. In this work, a standard duplex stainless steel (DSS) is modified for the first time with elemental powders in order to systematically adjust the resulting phase formation, mechanical properties, and corrosion resistance. For this, powder mixtures were generated consisting of prealloyed DSS 1.4462 and additions of pure chromium (1.0–7.0 wt. %) or nickel (1.0–5.0 wt. %) powder. Processing them by means of DED-LB/M resulted in specimens (rel. density &gt; 99.7%) with ferrite–austenite phase ratios ranging from almost 10%:90% to 90%:10%. Increasing the chromium content successively increased the ferrite percentage, resulting in higher material hardness, higher strength, and resistance against pitting corrosion but poor ductility and toughness compared to unmodified DSS. In contrast, an increased nickel content resulted in an increased austenite formation with lower hardness and strength but increased ductility. This strategy was shown to add flexibility to powder-based AM processes by enabling an on-demand material design for stainless steels.\",\"PeriodicalId\":50168,\"journal\":{\"name\":\"Journal of Laser Applications\",\"volume\":\"2022 1\",\"pages\":\"0\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2023-09-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Laser Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2351/7.0001119\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Laser Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2351/7.0001119","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Tailoring material properties of duplex stainless steel by DED-LB/M and in situ alloying with elemental powders
Stainless steels are established in various fields with challenging environments, e.g., offshore, petrochemical, and automotive industries. The combination of high-performance properties and high-value added applications makes stainless steels attractive for additive manufacturing (AM). In powder-based AM processes such as laser-directed energy deposition (DED-LB/M), typically prealloyed powders are used for part generation. By an innovative approach called in situ alloying, the chemical composition of prealloyed powder can be adjusted by mixing it with an additional powder material. This allows the material properties to be flexibly and efficiently tailored for specific applications. In this work, a standard duplex stainless steel (DSS) is modified for the first time with elemental powders in order to systematically adjust the resulting phase formation, mechanical properties, and corrosion resistance. For this, powder mixtures were generated consisting of prealloyed DSS 1.4462 and additions of pure chromium (1.0–7.0 wt. %) or nickel (1.0–5.0 wt. %) powder. Processing them by means of DED-LB/M resulted in specimens (rel. density > 99.7%) with ferrite–austenite phase ratios ranging from almost 10%:90% to 90%:10%. Increasing the chromium content successively increased the ferrite percentage, resulting in higher material hardness, higher strength, and resistance against pitting corrosion but poor ductility and toughness compared to unmodified DSS. In contrast, an increased nickel content resulted in an increased austenite formation with lower hardness and strength but increased ductility. This strategy was shown to add flexibility to powder-based AM processes by enabling an on-demand material design for stainless steels.
期刊介绍:
The Journal of Laser Applications (JLA) is the scientific platform of the Laser Institute of America (LIA) and is published in cooperation with AIP Publishing. The high-quality articles cover a broad range from fundamental and applied research and development to industrial applications. Therefore, JLA is a reflection of the state-of-R&D in photonic production, sensing and measurement as well as Laser safety.
The following international and well known first-class scientists serve as allocated Editors in 9 new categories:
High Precision Materials Processing with Ultrafast Lasers
Laser Additive Manufacturing
High Power Materials Processing with High Brightness Lasers
Emerging Applications of Laser Technologies in High-performance/Multi-function Materials and Structures
Surface Modification
Lasers in Nanomanufacturing / Nanophotonics & Thin Film Technology
Spectroscopy / Imaging / Diagnostics / Measurements
Laser Systems and Markets
Medical Applications & Safety
Thermal Transportation
Nanomaterials and Nanoprocessing
Laser applications in Microelectronics.