{"title":"地铁站附近歌剧院地铁诱发振动的评估、预测和缓解:一个案例研究","authors":"Qihao Wang, Xiaopei Cai, Qian Zhang, Yuqi Wang, Xueyang Tang","doi":"10.1007/s40864-023-00201-5","DOIUrl":null,"url":null,"abstract":"Abstract Rapid urban expansion and the development of urban rail transit networks have led to a deteriorating vibration environment along metro lines. These long-term vibrations pose significant challenges to adjacent buildings, such as opera theatres, and to the well-being of nearby residents. Consequently, there is a critical need for vibration evaluation and the implementation of mitigation solutions. This work provides a numerical investigation into the dynamics of vibrations observed in an opera theatre located above a metro station. A unified coupling method, known as the train-track-station-solum-opera model, is proposed and validated with field experiments. By employing contact theory, deformation coordination criteria, and spring elements, various components are meticulously modeled and coupled. Using this unified coupled approach, metro-induced vibrations at the opera theatre are predicted and evaluated. Additionally, vibration control measures are employed from the perspectives of transfer paths and vibration receivers to mitigate and isolate excessive theatre vibrations. The results, based on a case where the distance between the metro line and the opera theatre is 42 m, demonstrate that metro operations can lead to vibrations exceeding acceptable limits at the opera theatre near the metro station. Therefore, it is imperative that vibrations are assessed before constructing vibration-sensitive buildings along metro lines and that mitigation measures are implemented to meet specifications. In this work, the application of extruded polystyrene (XPS) plates and optimization of building structures effectively reduced excessive theatre vibrations by 1–2.5 dB, offering viable attenuation options without requiring modifications to the existing metro system.","PeriodicalId":44861,"journal":{"name":"Urban Rail Transit","volume":null,"pages":null},"PeriodicalIF":1.7000,"publicationDate":"2023-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Assessment, Prediction, and Mitigation of Metro-Induced Vibrations for an Opera Theatre Adjacent to a Station: A Case Study\",\"authors\":\"Qihao Wang, Xiaopei Cai, Qian Zhang, Yuqi Wang, Xueyang Tang\",\"doi\":\"10.1007/s40864-023-00201-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Rapid urban expansion and the development of urban rail transit networks have led to a deteriorating vibration environment along metro lines. These long-term vibrations pose significant challenges to adjacent buildings, such as opera theatres, and to the well-being of nearby residents. Consequently, there is a critical need for vibration evaluation and the implementation of mitigation solutions. This work provides a numerical investigation into the dynamics of vibrations observed in an opera theatre located above a metro station. A unified coupling method, known as the train-track-station-solum-opera model, is proposed and validated with field experiments. By employing contact theory, deformation coordination criteria, and spring elements, various components are meticulously modeled and coupled. Using this unified coupled approach, metro-induced vibrations at the opera theatre are predicted and evaluated. Additionally, vibration control measures are employed from the perspectives of transfer paths and vibration receivers to mitigate and isolate excessive theatre vibrations. The results, based on a case where the distance between the metro line and the opera theatre is 42 m, demonstrate that metro operations can lead to vibrations exceeding acceptable limits at the opera theatre near the metro station. Therefore, it is imperative that vibrations are assessed before constructing vibration-sensitive buildings along metro lines and that mitigation measures are implemented to meet specifications. In this work, the application of extruded polystyrene (XPS) plates and optimization of building structures effectively reduced excessive theatre vibrations by 1–2.5 dB, offering viable attenuation options without requiring modifications to the existing metro system.\",\"PeriodicalId\":44861,\"journal\":{\"name\":\"Urban Rail Transit\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2023-09-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Urban Rail Transit\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s40864-023-00201-5\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"TRANSPORTATION\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Urban Rail Transit","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s40864-023-00201-5","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"TRANSPORTATION","Score":null,"Total":0}
Assessment, Prediction, and Mitigation of Metro-Induced Vibrations for an Opera Theatre Adjacent to a Station: A Case Study
Abstract Rapid urban expansion and the development of urban rail transit networks have led to a deteriorating vibration environment along metro lines. These long-term vibrations pose significant challenges to adjacent buildings, such as opera theatres, and to the well-being of nearby residents. Consequently, there is a critical need for vibration evaluation and the implementation of mitigation solutions. This work provides a numerical investigation into the dynamics of vibrations observed in an opera theatre located above a metro station. A unified coupling method, known as the train-track-station-solum-opera model, is proposed and validated with field experiments. By employing contact theory, deformation coordination criteria, and spring elements, various components are meticulously modeled and coupled. Using this unified coupled approach, metro-induced vibrations at the opera theatre are predicted and evaluated. Additionally, vibration control measures are employed from the perspectives of transfer paths and vibration receivers to mitigate and isolate excessive theatre vibrations. The results, based on a case where the distance between the metro line and the opera theatre is 42 m, demonstrate that metro operations can lead to vibrations exceeding acceptable limits at the opera theatre near the metro station. Therefore, it is imperative that vibrations are assessed before constructing vibration-sensitive buildings along metro lines and that mitigation measures are implemented to meet specifications. In this work, the application of extruded polystyrene (XPS) plates and optimization of building structures effectively reduced excessive theatre vibrations by 1–2.5 dB, offering viable attenuation options without requiring modifications to the existing metro system.
期刊介绍:
Urban Rail Transit is a peer-reviewed, international, interdisciplinary and open-access journal published under the SpringerOpen brand that provides a platform for scientists, researchers and engineers of urban rail transit to publish their original, significant articles on topics in urban rail transportation operation and management, design and planning, civil engineering, equipment and systems and other related topics to urban rail transit. It is to promote the academic discussions and technical exchanges among peers in the field. The journal also reports important news on the development and operating experience of urban rail transit and related government policies, laws, guidelines, and regulations. It could serve as an important reference for decision¬makers and technologists in urban rail research and construction field.
Specific topics cover:
Column I: Urban Rail Transportation Operation and Management
• urban rail transit flow theory, operation, planning, control and management
• traffic and transport safety
• traffic polices and economics
• urban rail management
• traffic information management
• urban rail scheduling
• train scheduling and management
• strategies of ticket price
• traffic information engineering & control
• intelligent transportation system (ITS) and information technology
• economics, finance, business & industry
• train operation, control
• transport Industries
• transportation engineering
Column II: Urban Rail Transportation Design and Planning
• urban rail planning
• pedestrian studies
• sustainable transport engineering
• rail electrification
• rail signaling and communication
• Intelligent & Automated Transport System Technology ?
• rolling stock design theory and structural reliability
• urban rail transit electrification and automation technologies
• transport Industries
• transportation engineering
Column III: Civil Engineering
• civil engineering technologies
• maintenance of rail infrastructure
• transportation infrastructure systems
• roads, bridges, tunnels, and underground engineering ?
• subgrade and pavement maintenance and performance
Column IV: Equipments and Systems
• mechanical-electronic technologies
• manufacturing engineering
• inspection for trains and rail
• vehicle-track coupling system dynamics, simulation and control
• superconductivity and levitation technology
• magnetic suspension and evacuated tube transport
• railway technology & engineering
• Railway Transport Industries
• transport & vehicle engineering
Column V: other topics of interest
• modern tram
• interdisciplinary transportation research
• environmental impacts such as vibration, noise and pollution
Article types:
• Papers. Reports of original research work.
• Design notes. Brief contributions on current design, development and application work; not normally more than 2500 words (3 journal pages), including descriptions of apparatus or techniques developed for a specific purpose, important experimental or theoretical points and novel technical solutions to commonly encountered problems.
• Rapid communications. Brief, urgent announcements of significant advances or preliminary accounts of new work, not more than 3500 words (4 journal pages). The most important criteria for acceptance of a rapid communication are novel and significant. For these articles authors must state briefly, in a covering letter, exactly why their works merit rapid publication.
• Review articles. These are intended to summarize accepted practice and report on recent progress in selected areas. Such articles are generally commissioned from experts in various field s by the Editorial Board, but others wishing to write a review article may submit an outline for preliminary consideration.