每一个对称久保-安藤连接都具有定序性质

Pub Date : 2023-09-11 DOI:10.4153/s0008439523000668
EMMANUEL CHETCUTI, CURT HEALEY
{"title":"每一个对称久保-安藤连接都具有定序性质","authors":"EMMANUEL CHETCUTI, CURT HEALEY","doi":"10.4153/s0008439523000668","DOIUrl":null,"url":null,"abstract":"Abstract In this article, the question of whether the Löwner partial order on the positive cone of an operator algebra is determined by the norm of any arbitrary Kubo–Ando mean is studied. The question was affirmatively answered for certain classes of Kubo–Ando means, yet the general case was left as an open problem. We here give a complete answer to this question, by showing that the norm of every symmetric Kubo–Ando mean is order-determining, i.e., if $A,B\\in \\mathcal B(H)^{++}$ satisfy $\\Vert A\\sigma X\\Vert \\le \\Vert B\\sigma X\\Vert $ for every $X\\in \\mathcal {A}^{{++}}$ , where $\\mathcal A$ is the C*-subalgebra generated by $B-A$ and I , then $A\\le B$ .","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"EVERY SYMMETRIC KUBO-ANDO CONNECTION HAS THE ORDER-DETERMINING PROPERTY\",\"authors\":\"EMMANUEL CHETCUTI, CURT HEALEY\",\"doi\":\"10.4153/s0008439523000668\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract In this article, the question of whether the Löwner partial order on the positive cone of an operator algebra is determined by the norm of any arbitrary Kubo–Ando mean is studied. The question was affirmatively answered for certain classes of Kubo–Ando means, yet the general case was left as an open problem. We here give a complete answer to this question, by showing that the norm of every symmetric Kubo–Ando mean is order-determining, i.e., if $A,B\\\\in \\\\mathcal B(H)^{++}$ satisfy $\\\\Vert A\\\\sigma X\\\\Vert \\\\le \\\\Vert B\\\\sigma X\\\\Vert $ for every $X\\\\in \\\\mathcal {A}^{{++}}$ , where $\\\\mathcal A$ is the C*-subalgebra generated by $B-A$ and I , then $A\\\\le B$ .\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2023-09-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4153/s0008439523000668\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4153/s0008439523000668","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

摘要本文研究了算子代数正锥上的Löwner偏阶是否由任意Kubo-Ando均值的范数决定的问题。对于某些类别的久保安藤手段,这个问题得到了肯定的回答,但对于一般情况,这个问题仍然是一个悬而未决的问题。我们在这里给出了这个问题的完整答案,通过证明每一个对称Kubo-Ando均值的范数是序决定的,即,如果$A,B\in \mathcal B(H)^{++}$满足$\Vert A\sigma X\Vert \le \Vert B\sigma X\Vert $对于每一个$X\in \mathcal {A}^{{++}}$,其中$\mathcal A$是由$B-A$和I生成的C*-子代数,则$A\le B$。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
EVERY SYMMETRIC KUBO-ANDO CONNECTION HAS THE ORDER-DETERMINING PROPERTY
Abstract In this article, the question of whether the Löwner partial order on the positive cone of an operator algebra is determined by the norm of any arbitrary Kubo–Ando mean is studied. The question was affirmatively answered for certain classes of Kubo–Ando means, yet the general case was left as an open problem. We here give a complete answer to this question, by showing that the norm of every symmetric Kubo–Ando mean is order-determining, i.e., if $A,B\in \mathcal B(H)^{++}$ satisfy $\Vert A\sigma X\Vert \le \Vert B\sigma X\Vert $ for every $X\in \mathcal {A}^{{++}}$ , where $\mathcal A$ is the C*-subalgebra generated by $B-A$ and I , then $A\le B$ .
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信