{"title":"磷酸盐饥饿增强水稻黄单胞菌pv。水稻的抗稻瘟病性","authors":"H.T.M. TO, V.P. NGUYEN, H.H CHU, N.T.P. MAI","doi":"10.32615/bp.2023.013","DOIUrl":null,"url":null,"abstract":"Bacterial leaf blight (BLB) is a common disease that affects rice development and yield. The effects of major nutrients, especially nitrogen, on rice BLB susceptibility have been considered when devising rational fertilization strategies. However, the defense mechanism of rice against BLB under phosphate (Pi)-deficient conditions remains uncertain. Jasmonic acid (JA) is a phytohormone produced by rice plants to respond to abiotic and biotic stresses. Here, the involvement of the JA pathway in rice response to Xanthomonas oryzae pv. oryzae (Xoo) under low Pi was investigated in two contrasting rice cultivars G299 and G22. Expressions of JA-related genes under low Pi and Pi-related genes under JA treatment were assessed. The resistant capacity of G299 and G22 against Xoo infection was also investigated. In the JA-sensitive and Pi-sensitive cv. G299, JA-related genes were highly expressed under low Pi, and low Pi-responsive genes were strongly upregulated under JA treatment. Neither JA nor Pi pathways were activated in the JA-tolerant and low Pi-tolerant cv. G22. Low Pi strongly enhanced rice resistance to Xoo in cv. G299. Our study demonstrated that Pi deficiency confers rice resistance to Xoo. The JA pathway modulates the response to low Pi, depending on the cultivar. Pi-response genes are involved in Pi stress and may participate in the regulation of overall plant growth under various abiotic stresses. These findings provide new insights into the interaction between phosphate deficiency and the JA pathway and the subsequent effect on plant disease resistance.","PeriodicalId":8912,"journal":{"name":"Biologia Plantarum","volume":null,"pages":null},"PeriodicalIF":0.8000,"publicationDate":"2023-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Phosphate starvation enhances Xanthomonas oryzae pv. oryzae resistance in rice\",\"authors\":\"H.T.M. TO, V.P. NGUYEN, H.H CHU, N.T.P. MAI\",\"doi\":\"10.32615/bp.2023.013\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Bacterial leaf blight (BLB) is a common disease that affects rice development and yield. The effects of major nutrients, especially nitrogen, on rice BLB susceptibility have been considered when devising rational fertilization strategies. However, the defense mechanism of rice against BLB under phosphate (Pi)-deficient conditions remains uncertain. Jasmonic acid (JA) is a phytohormone produced by rice plants to respond to abiotic and biotic stresses. Here, the involvement of the JA pathway in rice response to Xanthomonas oryzae pv. oryzae (Xoo) under low Pi was investigated in two contrasting rice cultivars G299 and G22. Expressions of JA-related genes under low Pi and Pi-related genes under JA treatment were assessed. The resistant capacity of G299 and G22 against Xoo infection was also investigated. In the JA-sensitive and Pi-sensitive cv. G299, JA-related genes were highly expressed under low Pi, and low Pi-responsive genes were strongly upregulated under JA treatment. Neither JA nor Pi pathways were activated in the JA-tolerant and low Pi-tolerant cv. G22. Low Pi strongly enhanced rice resistance to Xoo in cv. G299. Our study demonstrated that Pi deficiency confers rice resistance to Xoo. The JA pathway modulates the response to low Pi, depending on the cultivar. Pi-response genes are involved in Pi stress and may participate in the regulation of overall plant growth under various abiotic stresses. These findings provide new insights into the interaction between phosphate deficiency and the JA pathway and the subsequent effect on plant disease resistance.\",\"PeriodicalId\":8912,\"journal\":{\"name\":\"Biologia Plantarum\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2023-09-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biologia Plantarum\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.32615/bp.2023.013\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"PLANT SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biologia Plantarum","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.32615/bp.2023.013","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
Phosphate starvation enhances Xanthomonas oryzae pv. oryzae resistance in rice
Bacterial leaf blight (BLB) is a common disease that affects rice development and yield. The effects of major nutrients, especially nitrogen, on rice BLB susceptibility have been considered when devising rational fertilization strategies. However, the defense mechanism of rice against BLB under phosphate (Pi)-deficient conditions remains uncertain. Jasmonic acid (JA) is a phytohormone produced by rice plants to respond to abiotic and biotic stresses. Here, the involvement of the JA pathway in rice response to Xanthomonas oryzae pv. oryzae (Xoo) under low Pi was investigated in two contrasting rice cultivars G299 and G22. Expressions of JA-related genes under low Pi and Pi-related genes under JA treatment were assessed. The resistant capacity of G299 and G22 against Xoo infection was also investigated. In the JA-sensitive and Pi-sensitive cv. G299, JA-related genes were highly expressed under low Pi, and low Pi-responsive genes were strongly upregulated under JA treatment. Neither JA nor Pi pathways were activated in the JA-tolerant and low Pi-tolerant cv. G22. Low Pi strongly enhanced rice resistance to Xoo in cv. G299. Our study demonstrated that Pi deficiency confers rice resistance to Xoo. The JA pathway modulates the response to low Pi, depending on the cultivar. Pi-response genes are involved in Pi stress and may participate in the regulation of overall plant growth under various abiotic stresses. These findings provide new insights into the interaction between phosphate deficiency and the JA pathway and the subsequent effect on plant disease resistance.
期刊介绍:
BIOLOGIA PLANTARUM is an international journal for experimental botany. It publishes original scientific papers and brief communications, reviews on specialized topics, and book reviews in plant physiology, plant biochemistry and biophysics, physiological anatomy, ecophysiology, genetics, molecular biology, cell biology, evolution, and pathophysiology. All papers should contribute substantially to the current level of plant science and combine originality with a potential general interest. The journal focuses on model and crop plants, as well as on under-investigated species.