{"title":"Teugels鞅的Malliavin导数与平均场型随机极大值原理","authors":"Gaofeng Zong","doi":"10.1080/17442508.2023.2256506","DOIUrl":null,"url":null,"abstract":"We study the mean-field type stochastic control problem where the dynamics is governed by a general Lévy process with moments of all orders. For this, we introduce the power jump processes and the related Teugels martingales and give the Malliavin derivative with respect to Teugels martingales. We derive necessary and sufficient conditions for optimality of our control problem in the form of a mean-field stochastic maximum principle.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Malliavin derivative of Teugels martingales and mean-field type stochastic maximum principle\",\"authors\":\"Gaofeng Zong\",\"doi\":\"10.1080/17442508.2023.2256506\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study the mean-field type stochastic control problem where the dynamics is governed by a general Lévy process with moments of all orders. For this, we introduce the power jump processes and the related Teugels martingales and give the Malliavin derivative with respect to Teugels martingales. We derive necessary and sufficient conditions for optimality of our control problem in the form of a mean-field stochastic maximum principle.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2023-09-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/17442508.2023.2256506\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/17442508.2023.2256506","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Malliavin derivative of Teugels martingales and mean-field type stochastic maximum principle
We study the mean-field type stochastic control problem where the dynamics is governed by a general Lévy process with moments of all orders. For this, we introduce the power jump processes and the related Teugels martingales and give the Malliavin derivative with respect to Teugels martingales. We derive necessary and sufficient conditions for optimality of our control problem in the form of a mean-field stochastic maximum principle.