Teugels鞅的Malliavin导数与平均场型随机极大值原理

Pub Date : 2023-09-11 DOI:10.1080/17442508.2023.2256506
Gaofeng Zong
{"title":"Teugels鞅的Malliavin导数与平均场型随机极大值原理","authors":"Gaofeng Zong","doi":"10.1080/17442508.2023.2256506","DOIUrl":null,"url":null,"abstract":"We study the mean-field type stochastic control problem where the dynamics is governed by a general Lévy process with moments of all orders. For this, we introduce the power jump processes and the related Teugels martingales and give the Malliavin derivative with respect to Teugels martingales. We derive necessary and sufficient conditions for optimality of our control problem in the form of a mean-field stochastic maximum principle.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Malliavin derivative of Teugels martingales and mean-field type stochastic maximum principle\",\"authors\":\"Gaofeng Zong\",\"doi\":\"10.1080/17442508.2023.2256506\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study the mean-field type stochastic control problem where the dynamics is governed by a general Lévy process with moments of all orders. For this, we introduce the power jump processes and the related Teugels martingales and give the Malliavin derivative with respect to Teugels martingales. We derive necessary and sufficient conditions for optimality of our control problem in the form of a mean-field stochastic maximum principle.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2023-09-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/17442508.2023.2256506\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/17442508.2023.2256506","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

研究了一类平均场型随机控制问题,该问题的动力学由具有所有阶矩的一般lsamvy过程控制。为此,我们引入幂跃过程和相关的Teugels鞅,并给出对Teugels鞅的Malliavin导数。我们以平均场随机极大值原理的形式导出了控制问题的最优性的充分必要条件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Malliavin derivative of Teugels martingales and mean-field type stochastic maximum principle
We study the mean-field type stochastic control problem where the dynamics is governed by a general Lévy process with moments of all orders. For this, we introduce the power jump processes and the related Teugels martingales and give the Malliavin derivative with respect to Teugels martingales. We derive necessary and sufficient conditions for optimality of our control problem in the form of a mean-field stochastic maximum principle.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信