巴拿赫空间中的几何常数和正交性

IF 0.4 4区 数学 Q4 MATHEMATICS
Yin Zhou, Qichuan Ni, Qi Liu, Yongjin Li
{"title":"巴拿赫空间中的几何常数和正交性","authors":"Yin Zhou, Qichuan Ni, Qi Liu, Yongjin Li","doi":"10.47443/cm.2023.045","DOIUrl":null,"url":null,"abstract":"Based on the parallelogram law and orthogonality, we define a new geometric constant and obtain some of its geometric properties. This constant provides a useful tool for estimating the exact values of Jordan-von Neumann constants in Banach spaces and for studying the orthogonality. In addition, we consider Pythagorean orthogonality and introduce another new constant to investigate a connection between Pythagorean orthogonality and isosceles orthogonality","PeriodicalId":48938,"journal":{"name":"Contributions To Discrete Mathematics","volume":null,"pages":null},"PeriodicalIF":0.4000,"publicationDate":"2023-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Geometric constants and orthogonality in Banach spaces\",\"authors\":\"Yin Zhou, Qichuan Ni, Qi Liu, Yongjin Li\",\"doi\":\"10.47443/cm.2023.045\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Based on the parallelogram law and orthogonality, we define a new geometric constant and obtain some of its geometric properties. This constant provides a useful tool for estimating the exact values of Jordan-von Neumann constants in Banach spaces and for studying the orthogonality. In addition, we consider Pythagorean orthogonality and introduce another new constant to investigate a connection between Pythagorean orthogonality and isosceles orthogonality\",\"PeriodicalId\":48938,\"journal\":{\"name\":\"Contributions To Discrete Mathematics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2023-09-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Contributions To Discrete Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.47443/cm.2023.045\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Contributions To Discrete Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.47443/cm.2023.045","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

本文章由计算机程序翻译,如有差异,请以英文原文为准。
Geometric constants and orthogonality in Banach spaces
Based on the parallelogram law and orthogonality, we define a new geometric constant and obtain some of its geometric properties. This constant provides a useful tool for estimating the exact values of Jordan-von Neumann constants in Banach spaces and for studying the orthogonality. In addition, we consider Pythagorean orthogonality and introduce another new constant to investigate a connection between Pythagorean orthogonality and isosceles orthogonality
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.30
自引率
0.00%
发文量
0
期刊介绍: Contributions to Discrete Mathematics (ISSN 1715-0868) is a refereed e-journal dedicated to publishing significant results in a number of areas of pure and applied mathematics. Based at the University of Calgary, Canada, CDM is free for both readers and authors, edited and published online and will be mirrored at the European Mathematical Information Service and the National Library of Canada.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信