固化条件对碱活化偏高岭土和稻壳灰衍生活化剂固化再生沥青路面的影响

IF 3.4 3区 工程技术 Q2 CONSTRUCTION & BUILDING TECHNOLOGY
Deise Trevizan Pelissaro, Aédnor Antonio Casado Zago, Suéllen Tonatto Ferrazzo, Giovani Jordi Bruschi, Francisco Dalla Rosa
{"title":"固化条件对碱活化偏高岭土和稻壳灰衍生活化剂固化再生沥青路面的影响","authors":"Deise Trevizan Pelissaro, Aédnor Antonio Casado Zago, Suéllen Tonatto Ferrazzo, Giovani Jordi Bruschi, Francisco Dalla Rosa","doi":"10.1080/14680629.2023.2276421","DOIUrl":null,"url":null,"abstract":"AbstractThe stabilization of recycled asphalt pavement (RAP) with alkali-activated cement (AAC) is a topic of growing interest for sustainable engineering, especially those containing alternative activators produced from waste. This study evaluated the effect of curing temperature on the stabilization of RAP with a metakaolin AAC and rice husk ash-derived activator for potential use in base and subbase layers in flexible pavement systems. Unconfined compressive strength (UCS), X-ray diffraction, and scanning electron microscopy tests were performed. Higher strength values were associated with higher temperatures and curing times. Curing oven time presented no influence over UCS and mineralogy. Blends cured at 20°C exhibited efflorescence formation and prolonged curing time at high temperatures negatively affected the mechanical performance. Curing temperature of 80°C up to 24 h promoted the formation and uniform distribution of cementing gels and a dense and compact structure, improving the compressive strength.KEYWORDS: Recycled asphalt pavementalkali-activated cementalternative alkaline activatorstrength developmentmineralogymicrostructure AcknowledgementsThe authors wish to explicit their appreciation to National Council for Scientific and Technological Development -CNPq for the support to the research group.Disclosure statementNo potential conflict of interest was reported by the author(s).Authors’ contributionsAll authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by Aednor Antonio Casado Zago and Deise Trevizan Pelissaro. The first draft of the manuscript was written by Deise Trevizan Pelissaro and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript. In addition, Francisco Dalla Rosa was responsible for the supervision of the research.Data availability statementSome or all data, models, or code that support the findings of this study are available from the corresponding author upon reasonable request.","PeriodicalId":21475,"journal":{"name":"Road Materials and Pavement Design","volume":null,"pages":null},"PeriodicalIF":3.4000,"publicationDate":"2023-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Curing conditions effect on the stabilization of recycled asphalt pavement with alkali-activated metakaolin and rice husk ash-derived activator\",\"authors\":\"Deise Trevizan Pelissaro, Aédnor Antonio Casado Zago, Suéllen Tonatto Ferrazzo, Giovani Jordi Bruschi, Francisco Dalla Rosa\",\"doi\":\"10.1080/14680629.2023.2276421\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"AbstractThe stabilization of recycled asphalt pavement (RAP) with alkali-activated cement (AAC) is a topic of growing interest for sustainable engineering, especially those containing alternative activators produced from waste. This study evaluated the effect of curing temperature on the stabilization of RAP with a metakaolin AAC and rice husk ash-derived activator for potential use in base and subbase layers in flexible pavement systems. Unconfined compressive strength (UCS), X-ray diffraction, and scanning electron microscopy tests were performed. Higher strength values were associated with higher temperatures and curing times. Curing oven time presented no influence over UCS and mineralogy. Blends cured at 20°C exhibited efflorescence formation and prolonged curing time at high temperatures negatively affected the mechanical performance. Curing temperature of 80°C up to 24 h promoted the formation and uniform distribution of cementing gels and a dense and compact structure, improving the compressive strength.KEYWORDS: Recycled asphalt pavementalkali-activated cementalternative alkaline activatorstrength developmentmineralogymicrostructure AcknowledgementsThe authors wish to explicit their appreciation to National Council for Scientific and Technological Development -CNPq for the support to the research group.Disclosure statementNo potential conflict of interest was reported by the author(s).Authors’ contributionsAll authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by Aednor Antonio Casado Zago and Deise Trevizan Pelissaro. The first draft of the manuscript was written by Deise Trevizan Pelissaro and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript. In addition, Francisco Dalla Rosa was responsible for the supervision of the research.Data availability statementSome or all data, models, or code that support the findings of this study are available from the corresponding author upon reasonable request.\",\"PeriodicalId\":21475,\"journal\":{\"name\":\"Road Materials and Pavement Design\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2023-11-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Road Materials and Pavement Design\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/14680629.2023.2276421\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CONSTRUCTION & BUILDING TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Road Materials and Pavement Design","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/14680629.2023.2276421","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

摘要碱活化水泥(AAC)稳定再生沥青路面(RAP)是可持续工程日益关注的课题,特别是那些含有从废物中产生的替代活化剂的再生沥青路面。本研究评估了固化温度对偏高岭土AAC和稻壳灰衍生活化剂在柔性路面系统基层和亚基层中的潜在应用对RAP稳定性的影响。进行无侧限抗压强度(UCS)、x射线衍射和扫描电镜测试。较高的强度值与较高的温度和固化时间有关。焙烧时间对矿物学和单束强度无明显影响。在20°C下固化的共混物表现出开花现象,高温下延长固化时间对其力学性能产生负面影响。80℃~ 24 h的养护温度促进了胶凝凝胶的形成和均匀分布,结构致密致密,提高了抗压强度。关键词:再生沥青路面碱活化水泥替代碱活化剂强度发展矿物学微观结构感谢国家科学技术发展委员会对课题组的支持。披露声明作者未报告潜在的利益冲突。作者的贡献所有作者都对研究的构思和设计做出了贡献。材料准备、数据收集和分析由Aednor Antonio Casado Zago和Deise Trevizan Pelissaro完成。手稿的初稿由Deise Trevizan Pelissaro撰写,所有作者都对之前的手稿版本进行了评论。所有作者都阅读并批准了最终的手稿。此外,弗朗西斯科·达拉·罗莎负责监督这项研究。数据可用性声明支持本研究结果的部分或全部数据、模型或代码可根据通讯作者的合理要求获得。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Curing conditions effect on the stabilization of recycled asphalt pavement with alkali-activated metakaolin and rice husk ash-derived activator
AbstractThe stabilization of recycled asphalt pavement (RAP) with alkali-activated cement (AAC) is a topic of growing interest for sustainable engineering, especially those containing alternative activators produced from waste. This study evaluated the effect of curing temperature on the stabilization of RAP with a metakaolin AAC and rice husk ash-derived activator for potential use in base and subbase layers in flexible pavement systems. Unconfined compressive strength (UCS), X-ray diffraction, and scanning electron microscopy tests were performed. Higher strength values were associated with higher temperatures and curing times. Curing oven time presented no influence over UCS and mineralogy. Blends cured at 20°C exhibited efflorescence formation and prolonged curing time at high temperatures negatively affected the mechanical performance. Curing temperature of 80°C up to 24 h promoted the formation and uniform distribution of cementing gels and a dense and compact structure, improving the compressive strength.KEYWORDS: Recycled asphalt pavementalkali-activated cementalternative alkaline activatorstrength developmentmineralogymicrostructure AcknowledgementsThe authors wish to explicit their appreciation to National Council for Scientific and Technological Development -CNPq for the support to the research group.Disclosure statementNo potential conflict of interest was reported by the author(s).Authors’ contributionsAll authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by Aednor Antonio Casado Zago and Deise Trevizan Pelissaro. The first draft of the manuscript was written by Deise Trevizan Pelissaro and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript. In addition, Francisco Dalla Rosa was responsible for the supervision of the research.Data availability statementSome or all data, models, or code that support the findings of this study are available from the corresponding author upon reasonable request.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Road Materials and Pavement Design
Road Materials and Pavement Design 工程技术-材料科学:综合
CiteScore
8.10
自引率
8.10%
发文量
105
审稿时长
3 months
期刊介绍: The international journal Road Materials and Pavement Design welcomes contributions on mechanical, thermal, chemical and/or physical properties and characteristics of bitumens, additives, bituminous mixes, asphalt concrete, cement concrete, unbound granular materials, soils, geo-composites, new and innovative materials, as well as mix design, soil stabilization, and environmental aspects of handling and re-use of road materials. The Journal also intends to offer a platform for the publication of research of immediate interest regarding design and modeling of pavement behavior and performance, structural evaluation, stress, strain and thermal characterization and/or calculation, vehicle/road interaction, climatic effects and numerical and analytical modeling. The different layers of the road, including the soil, are considered. Emerging topics, such as new sensing methods, machine learning, smart materials and smart city pavement infrastructure are also encouraged. Contributions in the areas of airfield pavements and rail track infrastructures as well as new emerging modes of surface transportation are also welcome.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信