{"title":"制造具有 O-掺杂和 S-空位双重缺陷的 MoS2,实现高效制氢","authors":"Hongyu Zhao, Hao Zhang, Ruoyu Huang, Jianmin Wang, Jiajia Cai, Jing Hu, Zhijie Chen, Yongtao Li, Haijin Li","doi":"10.1007/s12678-023-00850-x","DOIUrl":null,"url":null,"abstract":"<div><p>Developing excellent electrocatalysts is a significant step in accelerating the widespread implementation of the electrochemical hydrogen evolution reaction (HER). MoS<sub>2</sub> is one of the promising alternatives to platinum-based catalysts, while its HER activity is far from Pt due to the lack of active sites. It is urgent to develop a novel strategy to activate the basal planes of MoS<sub>2</sub> for enhancing the HER activity. Herein, a facile hydrothermal method with a low-temperature H<sub>2</sub>O<sub>2</sub> etching method is developed to fabricate MoS<sub>2</sub> with O-doped and S-vacancy dual defects. The dual defects MoS<sub>2</sub> nanosheet demonstrates remarkable hydrogen evolution reaction (HER) activity, achieving 10 mA cm<sup>−2</sup> with a small overpotential of around 143 mV in 0.5 M H<sub>2</sub>SO<sub>4</sub>.</p><h3>Graphical Abstract</h3>\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div><p>Construct dual-defect MoS2 via a facile hydrothermal method and mild H2O2 etching process.</p></div>","PeriodicalId":535,"journal":{"name":"Electrocatalysis","volume":"15 1","pages":"20 - 28"},"PeriodicalIF":2.7000,"publicationDate":"2023-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fabrication of MoS2 with Dual Defects of O-Doping and S-Vacancies for High-Efficiency Hydrogen Production\",\"authors\":\"Hongyu Zhao, Hao Zhang, Ruoyu Huang, Jianmin Wang, Jiajia Cai, Jing Hu, Zhijie Chen, Yongtao Li, Haijin Li\",\"doi\":\"10.1007/s12678-023-00850-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Developing excellent electrocatalysts is a significant step in accelerating the widespread implementation of the electrochemical hydrogen evolution reaction (HER). MoS<sub>2</sub> is one of the promising alternatives to platinum-based catalysts, while its HER activity is far from Pt due to the lack of active sites. It is urgent to develop a novel strategy to activate the basal planes of MoS<sub>2</sub> for enhancing the HER activity. Herein, a facile hydrothermal method with a low-temperature H<sub>2</sub>O<sub>2</sub> etching method is developed to fabricate MoS<sub>2</sub> with O-doped and S-vacancy dual defects. The dual defects MoS<sub>2</sub> nanosheet demonstrates remarkable hydrogen evolution reaction (HER) activity, achieving 10 mA cm<sup>−2</sup> with a small overpotential of around 143 mV in 0.5 M H<sub>2</sub>SO<sub>4</sub>.</p><h3>Graphical Abstract</h3>\\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div><p>Construct dual-defect MoS2 via a facile hydrothermal method and mild H2O2 etching process.</p></div>\",\"PeriodicalId\":535,\"journal\":{\"name\":\"Electrocatalysis\",\"volume\":\"15 1\",\"pages\":\"20 - 28\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2023-11-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Electrocatalysis\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s12678-023-00850-x\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electrocatalysis","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s12678-023-00850-x","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
摘要
开发优异的电催化剂是加快广泛实施电化学氢进化反应(HER)的重要一步。MoS2 是铂基催化剂的理想替代品之一,但由于缺乏活性位点,其氢进化活性与铂相差甚远。当务之急是开发一种激活 MoS2 基底平面的新策略,以提高 HER 活性。本文开发了一种简便的水热法和低温 H2O2 刻蚀法,以制备具有 O 掺杂和 S 空位双重缺陷的 MoS2。双缺陷 MoS2 纳米片显示出显著的氢进化反应(HER)活性,在 0.5 M H2SO4 中达到 10 mA cm-2,过电位小,约为 143 mV。
Fabrication of MoS2 with Dual Defects of O-Doping and S-Vacancies for High-Efficiency Hydrogen Production
Developing excellent electrocatalysts is a significant step in accelerating the widespread implementation of the electrochemical hydrogen evolution reaction (HER). MoS2 is one of the promising alternatives to platinum-based catalysts, while its HER activity is far from Pt due to the lack of active sites. It is urgent to develop a novel strategy to activate the basal planes of MoS2 for enhancing the HER activity. Herein, a facile hydrothermal method with a low-temperature H2O2 etching method is developed to fabricate MoS2 with O-doped and S-vacancy dual defects. The dual defects MoS2 nanosheet demonstrates remarkable hydrogen evolution reaction (HER) activity, achieving 10 mA cm−2 with a small overpotential of around 143 mV in 0.5 M H2SO4.
Graphical Abstract
Construct dual-defect MoS2 via a facile hydrothermal method and mild H2O2 etching process.
期刊介绍:
Electrocatalysis is cross-disciplinary in nature, and attracts the interest of chemists, physicists, biochemists, surface and materials scientists, and engineers. Electrocatalysis provides the unique international forum solely dedicated to the exchange of novel ideas in electrocatalysis for academic, government, and industrial researchers. Quick publication of new results, concepts, and inventions made involving Electrocatalysis stimulates scientific discoveries and breakthroughs, promotes the scientific and engineering concepts that are critical to the development of novel electrochemical technologies.
Electrocatalysis publishes original submissions in the form of letters, research papers, review articles, book reviews, and educational papers. Letters are preliminary reports that communicate new and important findings. Regular research papers are complete reports of new results, and their analysis and discussion. Review articles critically and constructively examine development in areas of electrocatalysis that are of broad interest and importance. Educational papers discuss important concepts whose understanding is vital to advances in theoretical and experimental aspects of electrochemical reactions.