基于增强型二元黑猩猩优化算法和机器学习的高维数据高效特征选择

Farid Ayeche, Adel Alti
{"title":"基于增强型二元黑猩猩优化算法和机器学习的高维数据高效特征选择","authors":"Farid Ayeche, Adel Alti","doi":"10.1007/s44230-023-00048-w","DOIUrl":null,"url":null,"abstract":"Abstract Feature selection with the highest performance accuracy is the biggest win for multidimensional data. The Chimpanzee Optimization Algorithm (ChOA) serves as a crucial technique for dealing with multidimensional global optimization issues. However, ChOA often lacks fast convergence and good selection of sensitive attributes leading to poor performance. To address these issues, most significant features were selected using two variants of ChOA called BChimp1 and BChimp2 (BChimp1 and BChimp are available at : https://www.mathworks.com/matlabcentral/fileexchange/133267-binary-chimpoptimization-algorithm-forfeatures-selection . September 22, 202). BChimp1 selects the optimal solution from the four best possible solutions and it applies a stochastic crossover on four moving solutions to deeply speed-up convergence level. BChimp2 uses the sigmoid function to select the significant features. Then, these features were trained using six-well known classifiers. The proposed techniques tend to select the most significant features, speed up the convergence rate and decrease training time for high-dimensional data. 23 standard datasets with six well-known classifiers were employed to assess the performance of BChimp1 and BChimp2. Experimental results validate the efficiency of BChimp1 and BChimp2 in enhancing accuracy by 83.83% and 82.02%, and reducing dimensionality by 42.77% and 72.54%, respectively. However, time-evaluation results of BChimp1 and BChimp2 in all datasets showed fast convergence and surpassed current optimization algorithms such as PSO, GWA, GOA, and GA.","PeriodicalId":303535,"journal":{"name":"Human-Centric Intelligent Systems","volume":"20 20","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Efficient Feature Selection in High Dimensional Data Based on Enhanced Binary Chimp Optimization Algorithms and Machine Learning\",\"authors\":\"Farid Ayeche, Adel Alti\",\"doi\":\"10.1007/s44230-023-00048-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Feature selection with the highest performance accuracy is the biggest win for multidimensional data. The Chimpanzee Optimization Algorithm (ChOA) serves as a crucial technique for dealing with multidimensional global optimization issues. However, ChOA often lacks fast convergence and good selection of sensitive attributes leading to poor performance. To address these issues, most significant features were selected using two variants of ChOA called BChimp1 and BChimp2 (BChimp1 and BChimp are available at : https://www.mathworks.com/matlabcentral/fileexchange/133267-binary-chimpoptimization-algorithm-forfeatures-selection . September 22, 202). BChimp1 selects the optimal solution from the four best possible solutions and it applies a stochastic crossover on four moving solutions to deeply speed-up convergence level. BChimp2 uses the sigmoid function to select the significant features. Then, these features were trained using six-well known classifiers. The proposed techniques tend to select the most significant features, speed up the convergence rate and decrease training time for high-dimensional data. 23 standard datasets with six well-known classifiers were employed to assess the performance of BChimp1 and BChimp2. Experimental results validate the efficiency of BChimp1 and BChimp2 in enhancing accuracy by 83.83% and 82.02%, and reducing dimensionality by 42.77% and 72.54%, respectively. However, time-evaluation results of BChimp1 and BChimp2 in all datasets showed fast convergence and surpassed current optimization algorithms such as PSO, GWA, GOA, and GA.\",\"PeriodicalId\":303535,\"journal\":{\"name\":\"Human-Centric Intelligent Systems\",\"volume\":\"20 20\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-11-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Human-Centric Intelligent Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s44230-023-00048-w\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Human-Centric Intelligent Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s44230-023-00048-w","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

摘要对于多维数据来说,具有最高性能精度的特征选择是最大的胜利。黑猩猩优化算法(ChOA)是处理多维全局优化问题的关键技术。然而,ChOA往往缺乏快速收敛和对敏感属性的良好选择,导致性能不佳。为了解决这些问题,使用两个ChOA变体BChimp1和BChimp2来选择最重要的特征(BChimp1和BChimp可在:https://www.mathworks.com/matlabcentral/fileexchange/133267-binary-chimpoptimization-algorithm-forfeatures-selection上获得)。2002年9月22日)。BChimp1从4个最优可能解中选择最优解,并对4个移动解进行随机交叉,深度加速收敛水平。BChimp2使用s型函数来选择显著特征。然后,使用六种已知的分类器对这些特征进行训练。所提出的技术倾向于选择最显著的特征,加快收敛速度,减少高维数据的训练时间。采用23个标准数据集和6个知名分类器来评估BChimp1和BChimp2的性能。实验结果表明,BChimp1和BChimp2的准确率分别提高了83.83%和82.02%,降维率分别降低了42.77%和72.54%。然而,BChimp1和BChimp2在所有数据集上的时间评价结果都显示出快速收敛,并超过了目前的优化算法,如PSO、GWA、GOA和GA。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Efficient Feature Selection in High Dimensional Data Based on Enhanced Binary Chimp Optimization Algorithms and Machine Learning
Abstract Feature selection with the highest performance accuracy is the biggest win for multidimensional data. The Chimpanzee Optimization Algorithm (ChOA) serves as a crucial technique for dealing with multidimensional global optimization issues. However, ChOA often lacks fast convergence and good selection of sensitive attributes leading to poor performance. To address these issues, most significant features were selected using two variants of ChOA called BChimp1 and BChimp2 (BChimp1 and BChimp are available at : https://www.mathworks.com/matlabcentral/fileexchange/133267-binary-chimpoptimization-algorithm-forfeatures-selection . September 22, 202). BChimp1 selects the optimal solution from the four best possible solutions and it applies a stochastic crossover on four moving solutions to deeply speed-up convergence level. BChimp2 uses the sigmoid function to select the significant features. Then, these features were trained using six-well known classifiers. The proposed techniques tend to select the most significant features, speed up the convergence rate and decrease training time for high-dimensional data. 23 standard datasets with six well-known classifiers were employed to assess the performance of BChimp1 and BChimp2. Experimental results validate the efficiency of BChimp1 and BChimp2 in enhancing accuracy by 83.83% and 82.02%, and reducing dimensionality by 42.77% and 72.54%, respectively. However, time-evaluation results of BChimp1 and BChimp2 in all datasets showed fast convergence and surpassed current optimization algorithms such as PSO, GWA, GOA, and GA.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信