一种新的Szasz-Mirakjan Kantorovich算子的推广,用于更好的误差估计

Erdem BAYTUNÇ, Hüseyin AKTUĞLU, Nazım MAHMUDOV
{"title":"一种新的Szasz-Mirakjan Kantorovich算子的推广,用于更好的误差估计","authors":"Erdem BAYTUNÇ, Hüseyin AKTUĞLU, Nazım MAHMUDOV","doi":"10.33401/fujma.1355254","DOIUrl":null,"url":null,"abstract":"In this paper, we construct a new sequence of Sz\\'{a}sz-Mirakjan Kantorovich Operators $K_{n,\\gamma}(f;x)$ depending on a parameter $\\gamma$. We prove direct and local approximation properties of these operators. We obtain the operators $K_{n,\\gamma}(f;x)$ to have better approximation results than classical Sz\\'{a}sz-Mirakjan Kantorovich Operators for all $x\\in[0,\\infty)$, for any $\\gamma>1$. Furthermore, we investigate the approximation results of these operators graphically and numerically. Moreover, we introduce new operators from $K_{n,\\gamma}(f;x)$ that preserve affine functions and bivariate case of $K_{n,\\gamma}(f;x)$. Then, we study their approximation properties and also illustrate the convergence of these new operators comparing with their classical cases.","PeriodicalId":199091,"journal":{"name":"Fundamental Journal of Mathematics and Applications","volume":"4 12","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A New Generalization of Szasz-Mirakjan Kantorovich Operators for Better Error Estimation\",\"authors\":\"Erdem BAYTUNÇ, Hüseyin AKTUĞLU, Nazım MAHMUDOV\",\"doi\":\"10.33401/fujma.1355254\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we construct a new sequence of Sz\\\\'{a}sz-Mirakjan Kantorovich Operators $K_{n,\\\\gamma}(f;x)$ depending on a parameter $\\\\gamma$. We prove direct and local approximation properties of these operators. We obtain the operators $K_{n,\\\\gamma}(f;x)$ to have better approximation results than classical Sz\\\\'{a}sz-Mirakjan Kantorovich Operators for all $x\\\\in[0,\\\\infty)$, for any $\\\\gamma>1$. Furthermore, we investigate the approximation results of these operators graphically and numerically. Moreover, we introduce new operators from $K_{n,\\\\gamma}(f;x)$ that preserve affine functions and bivariate case of $K_{n,\\\\gamma}(f;x)$. Then, we study their approximation properties and also illustrate the convergence of these new operators comparing with their classical cases.\",\"PeriodicalId\":199091,\"journal\":{\"name\":\"Fundamental Journal of Mathematics and Applications\",\"volume\":\"4 12\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-11-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Fundamental Journal of Mathematics and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.33401/fujma.1355254\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fundamental Journal of Mathematics and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.33401/fujma.1355254","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们构造了一个新的Szász-Mirakjan Kantorovich算子$K_{n,\gamma}(f;x)$序列,它依赖于一个参数$\gamma$。证明了这些算子的直接逼近性质和局部逼近性质。对于所有$x\in[0,\infty)$,对于任何$\gamma>1$,我们得到了比经典Szász-Mirakjan Kantorovich算子有更好的近似结果的算子$K_{n,\gamma}(f;x)$。此外,我们用图形和数值方法研究了这些算子的近似结果。此外,我们还从$K_{n,\gamma}(f;x)$中引入了保留仿射函数和$K_{n,\gamma}(f;x)$的二元情况的新算子。然后,我们研究了它们的逼近性质,并通过与经典情况的比较说明了这些新算子的收敛性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A New Generalization of Szasz-Mirakjan Kantorovich Operators for Better Error Estimation
In this paper, we construct a new sequence of Sz\'{a}sz-Mirakjan Kantorovich Operators $K_{n,\gamma}(f;x)$ depending on a parameter $\gamma$. We prove direct and local approximation properties of these operators. We obtain the operators $K_{n,\gamma}(f;x)$ to have better approximation results than classical Sz\'{a}sz-Mirakjan Kantorovich Operators for all $x\in[0,\infty)$, for any $\gamma>1$. Furthermore, we investigate the approximation results of these operators graphically and numerically. Moreover, we introduce new operators from $K_{n,\gamma}(f;x)$ that preserve affine functions and bivariate case of $K_{n,\gamma}(f;x)$. Then, we study their approximation properties and also illustrate the convergence of these new operators comparing with their classical cases.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信