可压缩流体动力学中的任意高阶渐近保持动力学格式

IF 1.4 4区 数学 Q2 MATHEMATICS, APPLIED
Rémi Abgrall, Fatemeh Nassajian Mojarrad
{"title":"可压缩流体动力学中的任意高阶渐近保持动力学格式","authors":"Rémi Abgrall, Fatemeh Nassajian Mojarrad","doi":"10.1007/s42967-023-00274-w","DOIUrl":null,"url":null,"abstract":"Abstract We present a class of arbitrarily high order fully explicit kinetic numerical methods in compressible fluid dynamics, both in time and space, which include the relaxation schemes by Jin and Xin. These methods can use the CFL number larger or equal to unity on regular Cartesian meshes for the multi-dimensional case. These kinetic models depend on a small parameter that can be seen as a “Knudsen” number. The method is asymptotic preserving in this Knudsen number. Also, the computational costs of the method are of the same order of a fully explicit scheme. This work is the extension of Abgrall et al. (2022) [3] to multi-dimensional systems. We have assessed our method on several problems for two-dimensional scalar problems and Euler equations and the scheme has proven to be robust and to achieve the theoretically predicted high order of accuracy on smooth solutions.","PeriodicalId":29916,"journal":{"name":"Communications on Applied Mathematics and Computation","volume":"21 1","pages":"0"},"PeriodicalIF":1.4000,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An Arbitrarily High Order and Asymptotic Preserving Kinetic Scheme in Compressible Fluid Dynamic\",\"authors\":\"Rémi Abgrall, Fatemeh Nassajian Mojarrad\",\"doi\":\"10.1007/s42967-023-00274-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract We present a class of arbitrarily high order fully explicit kinetic numerical methods in compressible fluid dynamics, both in time and space, which include the relaxation schemes by Jin and Xin. These methods can use the CFL number larger or equal to unity on regular Cartesian meshes for the multi-dimensional case. These kinetic models depend on a small parameter that can be seen as a “Knudsen” number. The method is asymptotic preserving in this Knudsen number. Also, the computational costs of the method are of the same order of a fully explicit scheme. This work is the extension of Abgrall et al. (2022) [3] to multi-dimensional systems. We have assessed our method on several problems for two-dimensional scalar problems and Euler equations and the scheme has proven to be robust and to achieve the theoretically predicted high order of accuracy on smooth solutions.\",\"PeriodicalId\":29916,\"journal\":{\"name\":\"Communications on Applied Mathematics and Computation\",\"volume\":\"21 1\",\"pages\":\"0\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2023-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Communications on Applied Mathematics and Computation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s42967-023-00274-w\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications on Applied Mathematics and Computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s42967-023-00274-w","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

摘要提出了可压缩流体动力学的一类任意高阶全显式时间和空间动力学数值方法,其中包括Jin和Xin的松弛格式。这些方法可以在正则笛卡尔网格上使用大于或等于单位的CFL数。这些动力学模型依赖于一个小参数,可以看作是“克努森”数。该方法在该Knudsen数下是渐近保持的。此外,该方法的计算成本与完全显式方案的计算成本相同。这项工作是Abgrall等人(2022)[3]对多维系统的扩展。我们已经在二维标量问题和欧拉方程的几个问题上评估了我们的方法,该方案已被证明是鲁棒的,并且在光滑解上实现了理论上预测的高阶精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An Arbitrarily High Order and Asymptotic Preserving Kinetic Scheme in Compressible Fluid Dynamic
Abstract We present a class of arbitrarily high order fully explicit kinetic numerical methods in compressible fluid dynamics, both in time and space, which include the relaxation schemes by Jin and Xin. These methods can use the CFL number larger or equal to unity on regular Cartesian meshes for the multi-dimensional case. These kinetic models depend on a small parameter that can be seen as a “Knudsen” number. The method is asymptotic preserving in this Knudsen number. Also, the computational costs of the method are of the same order of a fully explicit scheme. This work is the extension of Abgrall et al. (2022) [3] to multi-dimensional systems. We have assessed our method on several problems for two-dimensional scalar problems and Euler equations and the scheme has proven to be robust and to achieve the theoretically predicted high order of accuracy on smooth solutions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.50
自引率
6.20%
发文量
523
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信