用解析还原化学对空气中煤油雾滴点火的欧拉-拉格朗日数值模拟

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Antoine Pestre, Thomas Lesaffre, Quentin Cazères, Eleonore Riber, Bénédicte Cuenot
{"title":"用解析还原化学对空气中煤油雾滴点火的欧拉-拉格朗日数值模拟","authors":"Antoine Pestre, Thomas Lesaffre, Quentin Cazères, Eleonore Riber, Bénédicte Cuenot","doi":"10.1177/17568277231203620","DOIUrl":null,"url":null,"abstract":"High altitude relight is a critical aspect of the aeronautical engine certification and may be addressed with the numerical simulation of two-phase ignition. However, such configurations are stiff and combined with local evaporation may lead to numerical issues. This paper provides several methods to perform two-phase ignition simulations using analytically reduced chemistry in the context of unstructured large Eddy simulation and Euler–Lagrange formalism. Firstly, an exponential formulation combined with a local and dynamic sub-cycling of the stiff chemistry is demonstrated to allow stable integration at the flow time step. Secondly, a particle-bursting method is applied to limit the impact of stiffness induced by the Lagrangian point-source approach in fine meshes. These methods are then applied in the simulation of ignition of a mono-disperse, multi-component kerosene spray in air. The use of the analytically reduced chemistry model enables us to describe in detail the chemical structure of the flame kernel during its formation. Moreover, local increase of fuel concentration is observed as the ignition proceeds which has a large influence on the combustion processes and the flame kernel development.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-10-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Euler–Lagrange numerical simulation of a kerosene droplet mist ignition in air using analytically reduced chemistry\",\"authors\":\"Antoine Pestre, Thomas Lesaffre, Quentin Cazères, Eleonore Riber, Bénédicte Cuenot\",\"doi\":\"10.1177/17568277231203620\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"High altitude relight is a critical aspect of the aeronautical engine certification and may be addressed with the numerical simulation of two-phase ignition. However, such configurations are stiff and combined with local evaporation may lead to numerical issues. This paper provides several methods to perform two-phase ignition simulations using analytically reduced chemistry in the context of unstructured large Eddy simulation and Euler–Lagrange formalism. Firstly, an exponential formulation combined with a local and dynamic sub-cycling of the stiff chemistry is demonstrated to allow stable integration at the flow time step. Secondly, a particle-bursting method is applied to limit the impact of stiffness induced by the Lagrangian point-source approach in fine meshes. These methods are then applied in the simulation of ignition of a mono-disperse, multi-component kerosene spray in air. The use of the analytically reduced chemistry model enables us to describe in detail the chemical structure of the flame kernel during its formation. Moreover, local increase of fuel concentration is observed as the ignition proceeds which has a large influence on the combustion processes and the flame kernel development.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2023-10-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1177/17568277231203620\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/17568277231203620","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

高空重燃是航空发动机认证的一个关键问题,可以通过两相点火的数值模拟来解决。然而,这种结构是刚性的,并且与局部蒸发相结合可能导致数值问题。本文提供了几种在非结构化大涡流模拟和欧拉-拉格朗日形式理论的背景下,使用解析还原化学进行两相点火模拟的方法。首先,证明了结合局部和动态的刚性化学子循环的指数公式可以在流动时间步长实现稳定的积分。其次,在精细网格中,采用颗粒爆破方法限制拉格朗日点源法引起的刚度影响。然后将这些方法应用于单分散、多组分煤油喷雾在空气中的点火模拟。分析还原化学模型的使用使我们能够详细地描述火焰核形成过程中的化学结构。随着点火过程的进行,燃料浓度会局部升高,这对燃烧过程和火焰核的发展有很大的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Euler–Lagrange numerical simulation of a kerosene droplet mist ignition in air using analytically reduced chemistry
High altitude relight is a critical aspect of the aeronautical engine certification and may be addressed with the numerical simulation of two-phase ignition. However, such configurations are stiff and combined with local evaporation may lead to numerical issues. This paper provides several methods to perform two-phase ignition simulations using analytically reduced chemistry in the context of unstructured large Eddy simulation and Euler–Lagrange formalism. Firstly, an exponential formulation combined with a local and dynamic sub-cycling of the stiff chemistry is demonstrated to allow stable integration at the flow time step. Secondly, a particle-bursting method is applied to limit the impact of stiffness induced by the Lagrangian point-source approach in fine meshes. These methods are then applied in the simulation of ignition of a mono-disperse, multi-component kerosene spray in air. The use of the analytically reduced chemistry model enables us to describe in detail the chemical structure of the flame kernel during its formation. Moreover, local increase of fuel concentration is observed as the ignition proceeds which has a large influence on the combustion processes and the flame kernel development.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信