太阳的系列通过环切多重Zeta值

IF 0.9 3区 物理与天体物理 Q2 MATHEMATICS
Yajun Zhou
{"title":"太阳的系列通过环切多重Zeta值","authors":"Yajun Zhou","doi":"10.3842/sigma.2023.074","DOIUrl":null,"url":null,"abstract":"We prove and generalize several recent conjectures of Z.-W. Sun surrounding binomial coefficients and harmonic numbers. We show that Sun's series and their analogs can be represented as cyclotomic multiple zeta values of levels $N\\in\\{4,8,12,16,24\\}$, namely Goncharov's multiple polylogarithms evaluated at $N$-th roots of unity.","PeriodicalId":49453,"journal":{"name":"Symmetry Integrability and Geometry-Methods and Applications","volume":"115 1","pages":"0"},"PeriodicalIF":0.9000,"publicationDate":"2023-10-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Sun's Series via Cyclotomic Multiple Zeta Values\",\"authors\":\"Yajun Zhou\",\"doi\":\"10.3842/sigma.2023.074\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We prove and generalize several recent conjectures of Z.-W. Sun surrounding binomial coefficients and harmonic numbers. We show that Sun's series and their analogs can be represented as cyclotomic multiple zeta values of levels $N\\\\in\\\\{4,8,12,16,24\\\\}$, namely Goncharov's multiple polylogarithms evaluated at $N$-th roots of unity.\",\"PeriodicalId\":49453,\"journal\":{\"name\":\"Symmetry Integrability and Geometry-Methods and Applications\",\"volume\":\"115 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2023-10-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Symmetry Integrability and Geometry-Methods and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3842/sigma.2023.074\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Symmetry Integrability and Geometry-Methods and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3842/sigma.2023.074","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1

摘要

我们证明并推广了最近关于z - w的几个猜想。太阳周围二项式系数和调和数。我们证明Sun的级数和它们的类似物可以表示为在\{4,8,12,16,24\}$中$N阶的多个zeta值,即在$N$-单位根处求值的Goncharov的多重多对数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Sun's Series via Cyclotomic Multiple Zeta Values
We prove and generalize several recent conjectures of Z.-W. Sun surrounding binomial coefficients and harmonic numbers. We show that Sun's series and their analogs can be represented as cyclotomic multiple zeta values of levels $N\in\{4,8,12,16,24\}$, namely Goncharov's multiple polylogarithms evaluated at $N$-th roots of unity.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.80
自引率
0.00%
发文量
87
审稿时长
4-8 weeks
期刊介绍: Scope Geometrical methods in mathematical physics Lie theory and differential equations Classical and quantum integrable systems Algebraic methods in dynamical systems and chaos Exactly and quasi-exactly solvable models Lie groups and algebras, representation theory Orthogonal polynomials and special functions Integrable probability and stochastic processes Quantum algebras, quantum groups and their representations Symplectic, Poisson and noncommutative geometry Algebraic geometry and its applications Quantum field theories and string/gauge theories Statistical physics and condensed matter physics Quantum gravity and cosmology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信