迭代的有序原则$$\Pi ^1_1$$ -理解

IF 1.2 2区 数学 Q1 MATHEMATICS
Anton Freund, Michael Rathjen
{"title":"迭代的有序原则$$\\Pi ^1_1$$ -理解","authors":"Anton Freund, Michael Rathjen","doi":"10.1007/s00029-023-00879-2","DOIUrl":null,"url":null,"abstract":"Abstract We introduce ordinal collapsing principles that are inspired by proof theory but have a set theoretic flavor. These principles are shown to be equivalent to iterated $$\\Pi ^1_1$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:msubsup> <mml:mi>Π</mml:mi> <mml:mn>1</mml:mn> <mml:mn>1</mml:mn> </mml:msubsup> </mml:math> -comprehension and the existence of admissible sets, over weak base theories. Our work extends a previous result on the non-iterated case, which had been conjectured in Montalbán’s “Open questions in reverse mathematics\" (Bull Symb Log 17(3):431–454, 2011). This previous result has already been applied to the reverse mathematics of combinatorial and set theoretic principles. The present paper is a significant contribution to a general approach that connects these fields.","PeriodicalId":49551,"journal":{"name":"Selecta Mathematica-New Series","volume":"112 1","pages":"0"},"PeriodicalIF":1.2000,"publicationDate":"2023-10-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Well ordering principles for iterated $$\\\\Pi ^1_1$$-comprehension\",\"authors\":\"Anton Freund, Michael Rathjen\",\"doi\":\"10.1007/s00029-023-00879-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract We introduce ordinal collapsing principles that are inspired by proof theory but have a set theoretic flavor. These principles are shown to be equivalent to iterated $$\\\\Pi ^1_1$$ <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\"> <mml:msubsup> <mml:mi>Π</mml:mi> <mml:mn>1</mml:mn> <mml:mn>1</mml:mn> </mml:msubsup> </mml:math> -comprehension and the existence of admissible sets, over weak base theories. Our work extends a previous result on the non-iterated case, which had been conjectured in Montalbán’s “Open questions in reverse mathematics\\\" (Bull Symb Log 17(3):431–454, 2011). This previous result has already been applied to the reverse mathematics of combinatorial and set theoretic principles. The present paper is a significant contribution to a general approach that connects these fields.\",\"PeriodicalId\":49551,\"journal\":{\"name\":\"Selecta Mathematica-New Series\",\"volume\":\"112 1\",\"pages\":\"0\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2023-10-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Selecta Mathematica-New Series\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s00029-023-00879-2\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Selecta Mathematica-New Series","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s00029-023-00879-2","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

摘要:本文引入了受证明理论启发而又带有集合论色彩的序坍缩原理。在弱基理论上,这些原理被证明是等价于迭代$$\Pi ^1_1$$ Π -可容许集的可理解性和存在性。我们的工作扩展了之前在Montalbán的“反向数学中的开放问题”(Bull Symb Log 17(3): 431-454, 2011)中推测的非迭代情况的结果。这个先前的结果已经应用于组合和集合理论原理的逆向数学。本文对连接这些领域的一般方法作出了重大贡献。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Well ordering principles for iterated $$\Pi ^1_1$$-comprehension

Well ordering principles for iterated $$\Pi ^1_1$$-comprehension
Abstract We introduce ordinal collapsing principles that are inspired by proof theory but have a set theoretic flavor. These principles are shown to be equivalent to iterated $$\Pi ^1_1$$ Π 1 1 -comprehension and the existence of admissible sets, over weak base theories. Our work extends a previous result on the non-iterated case, which had been conjectured in Montalbán’s “Open questions in reverse mathematics" (Bull Symb Log 17(3):431–454, 2011). This previous result has already been applied to the reverse mathematics of combinatorial and set theoretic principles. The present paper is a significant contribution to a general approach that connects these fields.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.30
自引率
7.10%
发文量
68
审稿时长
>12 weeks
期刊介绍: Selecta Mathematica, New Series is a peer-reviewed journal addressed to a wide mathematical audience. It accepts well-written high quality papers in all areas of pure mathematics, and selected areas of applied mathematics. The journal especially encourages submission of papers which have the potential of opening new perspectives.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信