{"title":"符号动力系统Perron-Frobenius算子的广义特征值","authors":"Hayato Chiba, Masahiro Ikeda, Isao Ishikawa","doi":"10.1137/22m1476204","DOIUrl":null,"url":null,"abstract":"The generalized spectral theory is an effective approach to analyze a linear operator on a Hilbert space with a continuous spectrum. The generalized spectrum is computed via analytic continuations of the resolvent operators using a dense locally convex subspace of and its dual space . The three topological spaces are called the rigged Hilbert space or the Gelfand triplet. In this paper, the generalized spectra of the Perron–Frobenius operators of the one-sided and two-sided shifts of finite type (symbolic dynamical systems) are determined. A one-sided subshift of finite type which is conjugate to the multiplication with the golden ratio on modulo 1 is also considered. A new construction of the Gelfand triplet for the generalized spectrum of symbolic dynamical systems is proposed by means of an algebraic procedure. The asymptotic formula of the iteration of Perron–Frobenius operators is also given. The iteration converges to the mixing state whose rate of convergence is determined by the generalized spectrum.","PeriodicalId":49534,"journal":{"name":"SIAM Journal on Applied Dynamical Systems","volume":"43 1","pages":"0"},"PeriodicalIF":1.7000,"publicationDate":"2023-10-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Generalized Eigenvalues of the Perron–Frobenius Operators of Symbolic Dynamical Systems\",\"authors\":\"Hayato Chiba, Masahiro Ikeda, Isao Ishikawa\",\"doi\":\"10.1137/22m1476204\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The generalized spectral theory is an effective approach to analyze a linear operator on a Hilbert space with a continuous spectrum. The generalized spectrum is computed via analytic continuations of the resolvent operators using a dense locally convex subspace of and its dual space . The three topological spaces are called the rigged Hilbert space or the Gelfand triplet. In this paper, the generalized spectra of the Perron–Frobenius operators of the one-sided and two-sided shifts of finite type (symbolic dynamical systems) are determined. A one-sided subshift of finite type which is conjugate to the multiplication with the golden ratio on modulo 1 is also considered. A new construction of the Gelfand triplet for the generalized spectrum of symbolic dynamical systems is proposed by means of an algebraic procedure. The asymptotic formula of the iteration of Perron–Frobenius operators is also given. The iteration converges to the mixing state whose rate of convergence is determined by the generalized spectrum.\",\"PeriodicalId\":49534,\"journal\":{\"name\":\"SIAM Journal on Applied Dynamical Systems\",\"volume\":\"43 1\",\"pages\":\"0\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2023-10-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SIAM Journal on Applied Dynamical Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1137/22m1476204\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SIAM Journal on Applied Dynamical Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1137/22m1476204","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
Generalized Eigenvalues of the Perron–Frobenius Operators of Symbolic Dynamical Systems
The generalized spectral theory is an effective approach to analyze a linear operator on a Hilbert space with a continuous spectrum. The generalized spectrum is computed via analytic continuations of the resolvent operators using a dense locally convex subspace of and its dual space . The three topological spaces are called the rigged Hilbert space or the Gelfand triplet. In this paper, the generalized spectra of the Perron–Frobenius operators of the one-sided and two-sided shifts of finite type (symbolic dynamical systems) are determined. A one-sided subshift of finite type which is conjugate to the multiplication with the golden ratio on modulo 1 is also considered. A new construction of the Gelfand triplet for the generalized spectrum of symbolic dynamical systems is proposed by means of an algebraic procedure. The asymptotic formula of the iteration of Perron–Frobenius operators is also given. The iteration converges to the mixing state whose rate of convergence is determined by the generalized spectrum.
期刊介绍:
SIAM Journal on Applied Dynamical Systems (SIADS) publishes research articles on the mathematical analysis and modeling of dynamical systems and its application to the physical, engineering, life, and social sciences. SIADS is published in electronic format only.