具有长短期记忆和强化学习算法的解析器电路的开发

Yusuf Çağlayan
{"title":"具有长短期记忆和强化学习算法的解析器电路的开发","authors":"Yusuf Çağlayan","doi":"10.58190/icat.2023.23","DOIUrl":null,"url":null,"abstract":"In our age, the usage areas of artificial intelligence have increased considerably. These areas were particularly concerned with the correct predictability of future data using available data. It has become necessary to work on various machine learning algorithms to be used in the calculations of the resolver circuit, which is a feedback element used for tracking the position and position information of the electric motor unit used in various vehicles. The use of machine learning algorithms in the design and implementation of the resolver circuit, which is one of the most important elements of electric motor designs, will shed light on future studies. In this study, it is focused on the use of machine learning algorithms in the calculation of the resolver circuit, position and position information and the performance differences between each other. In this study, LSTM (Long Short Term Memory) and Reinforcement Learning (RL) algorithms were compared. While comparing these algorithms, the types of LSTM and RL algorithms were also studied and compared. As a result of the results obtained, it was aimed that the motor designs would be less costly, and the results obtained in terms of more reliable motor position and position information to be used were promising. In addition, with this study, a basis was created for working on machine learning algorithms in the calculation of different parameters. With this study, a great way has been achieved in integrating algorithms used in electric vehicles, which are quite obsolete today, into AI-based algorithms.","PeriodicalId":20592,"journal":{"name":"PROCEEDINGS OF THE III INTERNATIONAL CONFERENCE ON ADVANCED TECHNOLOGIES IN MATERIALS SCIENCE, MECHANICAL AND AUTOMATION ENGINEERING: MIP: Engineering-III – 2021","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Development of Resolver Circuit with Long Short Term Memory and Reinforcement Learning Algorithms\",\"authors\":\"Yusuf Çağlayan\",\"doi\":\"10.58190/icat.2023.23\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In our age, the usage areas of artificial intelligence have increased considerably. These areas were particularly concerned with the correct predictability of future data using available data. It has become necessary to work on various machine learning algorithms to be used in the calculations of the resolver circuit, which is a feedback element used for tracking the position and position information of the electric motor unit used in various vehicles. The use of machine learning algorithms in the design and implementation of the resolver circuit, which is one of the most important elements of electric motor designs, will shed light on future studies. In this study, it is focused on the use of machine learning algorithms in the calculation of the resolver circuit, position and position information and the performance differences between each other. In this study, LSTM (Long Short Term Memory) and Reinforcement Learning (RL) algorithms were compared. While comparing these algorithms, the types of LSTM and RL algorithms were also studied and compared. As a result of the results obtained, it was aimed that the motor designs would be less costly, and the results obtained in terms of more reliable motor position and position information to be used were promising. In addition, with this study, a basis was created for working on machine learning algorithms in the calculation of different parameters. With this study, a great way has been achieved in integrating algorithms used in electric vehicles, which are quite obsolete today, into AI-based algorithms.\",\"PeriodicalId\":20592,\"journal\":{\"name\":\"PROCEEDINGS OF THE III INTERNATIONAL CONFERENCE ON ADVANCED TECHNOLOGIES IN MATERIALS SCIENCE, MECHANICAL AND AUTOMATION ENGINEERING: MIP: Engineering-III – 2021\",\"volume\":\"5 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-08-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"PROCEEDINGS OF THE III INTERNATIONAL CONFERENCE ON ADVANCED TECHNOLOGIES IN MATERIALS SCIENCE, MECHANICAL AND AUTOMATION ENGINEERING: MIP: Engineering-III – 2021\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.58190/icat.2023.23\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"PROCEEDINGS OF THE III INTERNATIONAL CONFERENCE ON ADVANCED TECHNOLOGIES IN MATERIALS SCIENCE, MECHANICAL AND AUTOMATION ENGINEERING: MIP: Engineering-III – 2021","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.58190/icat.2023.23","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在我们这个时代,人工智能的使用领域已经大大增加。这些领域特别关注利用现有数据对未来数据的正确预测。有必要研究用于求解解析器电路的各种机器学习算法,解析器电路是用于跟踪各种车辆中使用的电动机单元的位置和位置信息的反馈元件。在电机设计中最重要的元素之一——解析器电路的设计和实现中使用机器学习算法,将为未来的研究带来光明。在本研究中,重点研究了机器学习算法在解析器电路、位置和位置信息的计算以及彼此之间的性能差异。在这项研究中,LSTM(长短期记忆)和强化学习(RL)算法进行了比较。在对这些算法进行比较的同时,对LSTM算法和RL算法的类型进行了研究和比较。结果表明,电机设计成本更低,电机位置和位置信息更可靠,结果令人鼓舞。此外,通过这项研究,为机器学习算法在计算不同参数方面的工作奠定了基础。通过这项研究,将目前相当过时的电动汽车算法整合到基于人工智能的算法中,取得了很大的进展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Development of Resolver Circuit with Long Short Term Memory and Reinforcement Learning Algorithms
In our age, the usage areas of artificial intelligence have increased considerably. These areas were particularly concerned with the correct predictability of future data using available data. It has become necessary to work on various machine learning algorithms to be used in the calculations of the resolver circuit, which is a feedback element used for tracking the position and position information of the electric motor unit used in various vehicles. The use of machine learning algorithms in the design and implementation of the resolver circuit, which is one of the most important elements of electric motor designs, will shed light on future studies. In this study, it is focused on the use of machine learning algorithms in the calculation of the resolver circuit, position and position information and the performance differences between each other. In this study, LSTM (Long Short Term Memory) and Reinforcement Learning (RL) algorithms were compared. While comparing these algorithms, the types of LSTM and RL algorithms were also studied and compared. As a result of the results obtained, it was aimed that the motor designs would be less costly, and the results obtained in terms of more reliable motor position and position information to be used were promising. In addition, with this study, a basis was created for working on machine learning algorithms in the calculation of different parameters. With this study, a great way has been achieved in integrating algorithms used in electric vehicles, which are quite obsolete today, into AI-based algorithms.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信