{"title":"关于一个简单图的$\\ $边理想","authors":"C. H. Tognon","doi":"10.17654/0972096023013","DOIUrl":null,"url":null,"abstract":"Considering a commutative ring $R$ with non-zero identity and the $R$-module $I(G)$, which is the edge ideal of a finite simple graph $G$, with no isolated vertex, we introduce the notion of an $\\omega$-edge ideal, which is a module. We establish some results which involve the sum of $\\omega$-edge ideals.","PeriodicalId":89368,"journal":{"name":"Far east journal of applied mathematics","volume":"171 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-10-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"ON AN $\\\\omega$-EDGE IDEAL OF A SIMPLE GRAPH\",\"authors\":\"C. H. Tognon\",\"doi\":\"10.17654/0972096023013\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Considering a commutative ring $R$ with non-zero identity and the $R$-module $I(G)$, which is the edge ideal of a finite simple graph $G$, with no isolated vertex, we introduce the notion of an $\\\\omega$-edge ideal, which is a module. We establish some results which involve the sum of $\\\\omega$-edge ideals.\",\"PeriodicalId\":89368,\"journal\":{\"name\":\"Far east journal of applied mathematics\",\"volume\":\"171 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-10-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Far east journal of applied mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.17654/0972096023013\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Far east journal of applied mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17654/0972096023013","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Considering a commutative ring $R$ with non-zero identity and the $R$-module $I(G)$, which is the edge ideal of a finite simple graph $G$, with no isolated vertex, we introduce the notion of an $\omega$-edge ideal, which is a module. We establish some results which involve the sum of $\omega$-edge ideals.