Qi Zhao, Shaohang Yan, Mingchen Qiang, Yu Hou, Tianwei Lai
{"title":"气体箔型推力轴承仿生冷却通道的热分析与优化","authors":"Qi Zhao, Shaohang Yan, Mingchen Qiang, Yu Hou, Tianwei Lai","doi":"10.1177/13506501231207162","DOIUrl":null,"url":null,"abstract":"Under high-temperature conditions, heat evacuation of foil bearing has a significant impact on bearing performance, including loading performance and reliability. During bearing operation, viscous dissipative heat in the lubricant gas film is the main source of heat generation. For foil bearings, enhancing the heat evacuation efficiency is essential to extend the bearing service life in high-temperature environments. For heat evacuation, foil-side cooling is a very effective method. For more in-depth analysis of thermal characteristics of the foil bearing, a three-dimensional (3D) thermal-elasto-hydrodynamic (TEHD) coupling model of multi-leaf thrust foil bearing (MLTFB) with cooling channel is established in this paper. In view of the good heat transfer performance and more uniform gas velocity distribution in bionic flow channels, various bionic cooling channels of foil bearings are proposed and the structural parameters are optimized. The effects of cooling channel type, cooling channel width, span ratio, cooling gas supply mode, and rotational speed on the thermal and loading performance of foil bearings are investigated. The studies demonstrate that the spider net round cooling channel exhibits higher heat transfer performance and improved uniformity of temperature. Compared to the cooling gas supply from inner edge, the cooling gas supply from the outer edge proves to be more effective. The maximum temperature of lubricant gas film can be greatly reduced with wider cooling channels and a smaller channel span at the outer edge. The maximum temperature of lubricant gas film and bearing load are reduced as the Reynolds number of cooling gas increases. There exists an optimal Reynolds number that can achieve the highest uniformity of temperature.","PeriodicalId":20570,"journal":{"name":"Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology","volume":"42 1","pages":"0"},"PeriodicalIF":1.6000,"publicationDate":"2023-10-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Thermal analysis and optimization of bionic cooling channels of gas foil thrust bearings\",\"authors\":\"Qi Zhao, Shaohang Yan, Mingchen Qiang, Yu Hou, Tianwei Lai\",\"doi\":\"10.1177/13506501231207162\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Under high-temperature conditions, heat evacuation of foil bearing has a significant impact on bearing performance, including loading performance and reliability. During bearing operation, viscous dissipative heat in the lubricant gas film is the main source of heat generation. For foil bearings, enhancing the heat evacuation efficiency is essential to extend the bearing service life in high-temperature environments. For heat evacuation, foil-side cooling is a very effective method. For more in-depth analysis of thermal characteristics of the foil bearing, a three-dimensional (3D) thermal-elasto-hydrodynamic (TEHD) coupling model of multi-leaf thrust foil bearing (MLTFB) with cooling channel is established in this paper. In view of the good heat transfer performance and more uniform gas velocity distribution in bionic flow channels, various bionic cooling channels of foil bearings are proposed and the structural parameters are optimized. The effects of cooling channel type, cooling channel width, span ratio, cooling gas supply mode, and rotational speed on the thermal and loading performance of foil bearings are investigated. The studies demonstrate that the spider net round cooling channel exhibits higher heat transfer performance and improved uniformity of temperature. Compared to the cooling gas supply from inner edge, the cooling gas supply from the outer edge proves to be more effective. The maximum temperature of lubricant gas film can be greatly reduced with wider cooling channels and a smaller channel span at the outer edge. The maximum temperature of lubricant gas film and bearing load are reduced as the Reynolds number of cooling gas increases. There exists an optimal Reynolds number that can achieve the highest uniformity of temperature.\",\"PeriodicalId\":20570,\"journal\":{\"name\":\"Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology\",\"volume\":\"42 1\",\"pages\":\"0\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2023-10-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1177/13506501231207162\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/13506501231207162","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
Thermal analysis and optimization of bionic cooling channels of gas foil thrust bearings
Under high-temperature conditions, heat evacuation of foil bearing has a significant impact on bearing performance, including loading performance and reliability. During bearing operation, viscous dissipative heat in the lubricant gas film is the main source of heat generation. For foil bearings, enhancing the heat evacuation efficiency is essential to extend the bearing service life in high-temperature environments. For heat evacuation, foil-side cooling is a very effective method. For more in-depth analysis of thermal characteristics of the foil bearing, a three-dimensional (3D) thermal-elasto-hydrodynamic (TEHD) coupling model of multi-leaf thrust foil bearing (MLTFB) with cooling channel is established in this paper. In view of the good heat transfer performance and more uniform gas velocity distribution in bionic flow channels, various bionic cooling channels of foil bearings are proposed and the structural parameters are optimized. The effects of cooling channel type, cooling channel width, span ratio, cooling gas supply mode, and rotational speed on the thermal and loading performance of foil bearings are investigated. The studies demonstrate that the spider net round cooling channel exhibits higher heat transfer performance and improved uniformity of temperature. Compared to the cooling gas supply from inner edge, the cooling gas supply from the outer edge proves to be more effective. The maximum temperature of lubricant gas film can be greatly reduced with wider cooling channels and a smaller channel span at the outer edge. The maximum temperature of lubricant gas film and bearing load are reduced as the Reynolds number of cooling gas increases. There exists an optimal Reynolds number that can achieve the highest uniformity of temperature.
期刊介绍:
The Journal of Engineering Tribology publishes high-quality, peer-reviewed papers from academia and industry worldwide on the engineering science associated with tribology and its applications.
"I am proud to say that I have been part of the tribology research community for almost 20 years. That community has always seemed to me to be highly active, progressive, and closely knit. The conferences are well attended and are characterised by a warmth and friendliness that transcends national boundaries. I see Part J as being an important part of that community, giving us an outlet to publish and promote our scholarly activities. I very much look forward to my term of office as editor of your Journal. I hope you will continue to submit papers, help out with reviewing, and most importantly to read and talk about the work you will find there." Professor Rob Dwyer-Joyce, Sheffield University, UK
This journal is a member of the Committee on Publication Ethics (COPE).