{"title":"具有busemann曲率界的Finsler度量","authors":"Chang-Wan Kim","doi":"10.17654/0972096023014","DOIUrl":null,"url":null,"abstract":"We prove that a Finsler metric has Busemann curvature bounded above (below, respectively) by $\\kappa$ if and only if it is the Berwald metric with flag curvature bounded above (below, respectively) by $\\kappa$. Combining this with Szabó’s Berwald metrization theorem, we can obtain that such a Finsler metric is affinely equivalent to a Riemannian metric with sectional curvature bounded above (below, respectively) by $\\kappa$.","PeriodicalId":89368,"journal":{"name":"Far east journal of applied mathematics","volume":"37 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-10-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"FINSLER METRICS WITH BUSEMANN CURVATURE BOUNDS\",\"authors\":\"Chang-Wan Kim\",\"doi\":\"10.17654/0972096023014\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We prove that a Finsler metric has Busemann curvature bounded above (below, respectively) by $\\\\kappa$ if and only if it is the Berwald metric with flag curvature bounded above (below, respectively) by $\\\\kappa$. Combining this with Szabó’s Berwald metrization theorem, we can obtain that such a Finsler metric is affinely equivalent to a Riemannian metric with sectional curvature bounded above (below, respectively) by $\\\\kappa$.\",\"PeriodicalId\":89368,\"journal\":{\"name\":\"Far east journal of applied mathematics\",\"volume\":\"37 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-10-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Far east journal of applied mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.17654/0972096023014\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Far east journal of applied mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17654/0972096023014","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
We prove that a Finsler metric has Busemann curvature bounded above (below, respectively) by $\kappa$ if and only if it is the Berwald metric with flag curvature bounded above (below, respectively) by $\kappa$. Combining this with Szabó’s Berwald metrization theorem, we can obtain that such a Finsler metric is affinely equivalent to a Riemannian metric with sectional curvature bounded above (below, respectively) by $\kappa$.