关于Katugampola分数阶导数和积分的结果

IF 0.7 Q2 MATHEMATICS
Iqbal H. Jebril, Mohammed S. El-Khatib, Ahmad A. Abubaker, Suha B. Al-Shaikh, Iqbal M. Batiha
{"title":"关于Katugampola分数阶导数和积分的结果","authors":"Iqbal H. Jebril, Mohammed S. El-Khatib, Ahmad A. Abubaker, Suha B. Al-Shaikh, Iqbal M. Batiha","doi":"10.28924/2291-8639-21-2023-113","DOIUrl":null,"url":null,"abstract":"In this paper, we introduce and develop a new definitions for Katugampola derivative and Katugampola integral. In particular, we defined a (left) fractional derivative starting from a of a function f of order α∈(m-1, m] and a (right) fractional derivative terminating at b, where m ∈ N. Then, we give some proprieties in relation to these operators such as linearity, product rule, quotient rule, power rule, chain rule, and vanishing derivatives for constant functions.","PeriodicalId":45204,"journal":{"name":"International Journal of Analysis and Applications","volume":"14 1","pages":"0"},"PeriodicalIF":0.7000,"publicationDate":"2023-10-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Results on Katugampola Fractional Derivatives and Integrals\",\"authors\":\"Iqbal H. Jebril, Mohammed S. El-Khatib, Ahmad A. Abubaker, Suha B. Al-Shaikh, Iqbal M. Batiha\",\"doi\":\"10.28924/2291-8639-21-2023-113\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we introduce and develop a new definitions for Katugampola derivative and Katugampola integral. In particular, we defined a (left) fractional derivative starting from a of a function f of order α∈(m-1, m] and a (right) fractional derivative terminating at b, where m ∈ N. Then, we give some proprieties in relation to these operators such as linearity, product rule, quotient rule, power rule, chain rule, and vanishing derivatives for constant functions.\",\"PeriodicalId\":45204,\"journal\":{\"name\":\"International Journal of Analysis and Applications\",\"volume\":\"14 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2023-10-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Analysis and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.28924/2291-8639-21-2023-113\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Analysis and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.28924/2291-8639-21-2023-113","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

本文给出了一种新的关于Katugampola导数和Katugampola积分的定义。特别地,我们定义了α∈(m-1, m)阶函数f从a开始的(左)分数阶导数和以b结束的(右)分数阶导数,其中m∈n,然后给出了与这些算子有关的一些性质,如线性、乘积法则、商法则、幂法则、链式法则和常函数的消失导数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Results on Katugampola Fractional Derivatives and Integrals
In this paper, we introduce and develop a new definitions for Katugampola derivative and Katugampola integral. In particular, we defined a (left) fractional derivative starting from a of a function f of order α∈(m-1, m] and a (right) fractional derivative terminating at b, where m ∈ N. Then, we give some proprieties in relation to these operators such as linearity, product rule, quotient rule, power rule, chain rule, and vanishing derivatives for constant functions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.30
自引率
10.00%
发文量
60
审稿时长
12 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信