利用基于原子力显微镜的操作制备的柔性纳米探针对单个纳米线进行电学表征

Yilin Wang, Enxiu Wu, Jirui Liu, Mengke Jia, Rui Zhang, Sen Wu
{"title":"利用基于原子力显微镜的操作制备的柔性纳米探针对单个纳米线进行电学表征","authors":"Yilin Wang, Enxiu Wu, Jirui Liu, Mengke Jia, Rui Zhang, Sen Wu","doi":"10.1063/10.0021195","DOIUrl":null,"url":null,"abstract":"Nanowires have emerged as promising one-dimensional materials with which to construct various nanocircuits and nanosensors. However, measuring the electrical properties of individual nanowires directly remains challenging because of their small size, thereby hindering the comprehensive understanding of nanowire-based device performance. A crucial factor in achieving reliable electrical characterization is establishing well-determined contact conditions between the nanowire sample and the electrodes, which becomes particularly difficult for soft nanowires. Introduced here is a novel technique for measuring the conductivity of an individual nanowire with the aid of automated nanomanipulation using an atomic force microscope. In this method, two nanowire segments cut from the same silver nanowire are positioned onto a pair of gold electrodes, serving as flexible nanoprobes to establish controllable contact with the sample. By changing the contact points along the nanowire sample, conductivity measurements can be performed on different regions, thereby eliminating the influence of contact resistance by analyzing multiple current–voltage curves. Using this approach, the resistivity of a 100-nm-diameter silver nanowire is determined to be 3.49 × 10−8 Ω m.","PeriodicalId":87330,"journal":{"name":"Nanotechnology and Precision Engineering","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-10-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Electrical characterization of an individual nanowire using flexible nanoprobes fabricated by atomic force microscopy-based manipulation\",\"authors\":\"Yilin Wang, Enxiu Wu, Jirui Liu, Mengke Jia, Rui Zhang, Sen Wu\",\"doi\":\"10.1063/10.0021195\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Nanowires have emerged as promising one-dimensional materials with which to construct various nanocircuits and nanosensors. However, measuring the electrical properties of individual nanowires directly remains challenging because of their small size, thereby hindering the comprehensive understanding of nanowire-based device performance. A crucial factor in achieving reliable electrical characterization is establishing well-determined contact conditions between the nanowire sample and the electrodes, which becomes particularly difficult for soft nanowires. Introduced here is a novel technique for measuring the conductivity of an individual nanowire with the aid of automated nanomanipulation using an atomic force microscope. In this method, two nanowire segments cut from the same silver nanowire are positioned onto a pair of gold electrodes, serving as flexible nanoprobes to establish controllable contact with the sample. By changing the contact points along the nanowire sample, conductivity measurements can be performed on different regions, thereby eliminating the influence of contact resistance by analyzing multiple current–voltage curves. Using this approach, the resistivity of a 100-nm-diameter silver nanowire is determined to be 3.49 × 10−8 Ω m.\",\"PeriodicalId\":87330,\"journal\":{\"name\":\"Nanotechnology and Precision Engineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-10-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nanotechnology and Precision Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1063/10.0021195\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanotechnology and Precision Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1063/10.0021195","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

纳米线是一种很有前途的一维材料,可以用来构建各种纳米电路和纳米传感器。然而,由于单个纳米线尺寸小,直接测量其电性能仍然具有挑战性,从而阻碍了对基于纳米线的器件性能的全面理解。实现可靠电特性的一个关键因素是在纳米线样品和电极之间建立良好的接触条件,这对于软纳米线来说尤为困难。本文介绍了一种利用原子力显微镜在自动纳米操作的辅助下测量单个纳米线电导率的新技术。在这种方法中,从同一根银纳米线上切下的两段纳米线被放置在一对金电极上,作为柔性纳米探针,与样品建立可控的接触。通过改变纳米线样品的接触点,可以在不同区域进行电导率测量,从而通过分析多个电流-电压曲线消除接触电阻的影响。利用这种方法,确定了直径为100纳米的银纳米线的电阻率为3.49 × 10−8 Ω m。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Electrical characterization of an individual nanowire using flexible nanoprobes fabricated by atomic force microscopy-based manipulation
Nanowires have emerged as promising one-dimensional materials with which to construct various nanocircuits and nanosensors. However, measuring the electrical properties of individual nanowires directly remains challenging because of their small size, thereby hindering the comprehensive understanding of nanowire-based device performance. A crucial factor in achieving reliable electrical characterization is establishing well-determined contact conditions between the nanowire sample and the electrodes, which becomes particularly difficult for soft nanowires. Introduced here is a novel technique for measuring the conductivity of an individual nanowire with the aid of automated nanomanipulation using an atomic force microscope. In this method, two nanowire segments cut from the same silver nanowire are positioned onto a pair of gold electrodes, serving as flexible nanoprobes to establish controllable contact with the sample. By changing the contact points along the nanowire sample, conductivity measurements can be performed on different regions, thereby eliminating the influence of contact resistance by analyzing multiple current–voltage curves. Using this approach, the resistivity of a 100-nm-diameter silver nanowire is determined to be 3.49 × 10−8 Ω m.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信