{"title":"苯和羟胺直接生成苯胺","authors":"Ningyu Liu, Matthew D. Sleck, William D. Jones","doi":"10.3390/chemistry5040139","DOIUrl":null,"url":null,"abstract":"A single-step method for aniline formation was examined. Using a vanadate catalyst with an iron oxide co-catalyst and hydroxylamine hydrochloride as the amine source, an up to 90% yield of aniline was obtained with high selectivity. Further study showed that the overall reaction was pseudo-second order in terms of hydroxylamine concentration. Regioselective H-D exchange experiments suggest that the C-N bond formation step occurs via an irreversible electrophilic pathway. Based on all of the key observations, a mechanism is proposed.","PeriodicalId":9850,"journal":{"name":"Chemistry","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Direct Aniline Formation with Benzene and Hydroxylamine\",\"authors\":\"Ningyu Liu, Matthew D. Sleck, William D. Jones\",\"doi\":\"10.3390/chemistry5040139\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A single-step method for aniline formation was examined. Using a vanadate catalyst with an iron oxide co-catalyst and hydroxylamine hydrochloride as the amine source, an up to 90% yield of aniline was obtained with high selectivity. Further study showed that the overall reaction was pseudo-second order in terms of hydroxylamine concentration. Regioselective H-D exchange experiments suggest that the C-N bond formation step occurs via an irreversible electrophilic pathway. Based on all of the key observations, a mechanism is proposed.\",\"PeriodicalId\":9850,\"journal\":{\"name\":\"Chemistry\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-09-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chemistry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/chemistry5040139\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Chemistry\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemistry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/chemistry5040139","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Chemistry","Score":null,"Total":0}
Direct Aniline Formation with Benzene and Hydroxylamine
A single-step method for aniline formation was examined. Using a vanadate catalyst with an iron oxide co-catalyst and hydroxylamine hydrochloride as the amine source, an up to 90% yield of aniline was obtained with high selectivity. Further study showed that the overall reaction was pseudo-second order in terms of hydroxylamine concentration. Regioselective H-D exchange experiments suggest that the C-N bond formation step occurs via an irreversible electrophilic pathway. Based on all of the key observations, a mechanism is proposed.
期刊介绍:
Chemistry—A European Journal is a truly international journal with top quality contributions (2017 ISI Impact Factor: 5.16). It publishes a wide range of outstanding Reviews, Minireviews, Concepts, Full Papers, and Communications from all areas of chemistry and related fields.