{"title":"具有内部和边界非线性反应的椭圆方程的Fredholm替代","authors":"Daniel Maroncelli, Mauricio A. Rivas","doi":"10.12775/tmna.2022.054","DOIUrl":null,"url":null,"abstract":"In this paper we study the existence of solutions to the following generalized nonlinear two-parameter problem \\begin{equation*} a(u, v) = \\lambda b(u, v) + \\mu m(u, v) + \\varepsilon F(u, v), \\end{equation*} for a triple $(a, b, m)$ of continuous, symmetric bilinear forms on a real separable Hilbert space $V$ and nonlinear form $F$. This problem is a natural abstraction of nonlinear problems that occur for a large class of differential operators, various elliptic pde's with nonlinearities in either the differential equation and/or the boundary conditions being a special subclass. First, a Fredholm alternative for the associated linear two-parameter eigenvalue problem is developed, and then this is used to construct a nonlinear version of the Fredholm alternative. Lastly, the Steklov-Robin Fredholm equation is used to exemplify the abstract results.","PeriodicalId":23130,"journal":{"name":"Topological Methods in Nonlinear Analysis","volume":"2014 1","pages":"0"},"PeriodicalIF":0.7000,"publicationDate":"2023-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Fredholm alternative for elliptic equations with interior and boundary nonlinear reactions\",\"authors\":\"Daniel Maroncelli, Mauricio A. Rivas\",\"doi\":\"10.12775/tmna.2022.054\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we study the existence of solutions to the following generalized nonlinear two-parameter problem \\\\begin{equation*} a(u, v) = \\\\lambda b(u, v) + \\\\mu m(u, v) + \\\\varepsilon F(u, v), \\\\end{equation*} for a triple $(a, b, m)$ of continuous, symmetric bilinear forms on a real separable Hilbert space $V$ and nonlinear form $F$. This problem is a natural abstraction of nonlinear problems that occur for a large class of differential operators, various elliptic pde's with nonlinearities in either the differential equation and/or the boundary conditions being a special subclass. First, a Fredholm alternative for the associated linear two-parameter eigenvalue problem is developed, and then this is used to construct a nonlinear version of the Fredholm alternative. Lastly, the Steklov-Robin Fredholm equation is used to exemplify the abstract results.\",\"PeriodicalId\":23130,\"journal\":{\"name\":\"Topological Methods in Nonlinear Analysis\",\"volume\":\"2014 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2023-09-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Topological Methods in Nonlinear Analysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.12775/tmna.2022.054\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Topological Methods in Nonlinear Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.12775/tmna.2022.054","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
A Fredholm alternative for elliptic equations with interior and boundary nonlinear reactions
In this paper we study the existence of solutions to the following generalized nonlinear two-parameter problem \begin{equation*} a(u, v) = \lambda b(u, v) + \mu m(u, v) + \varepsilon F(u, v), \end{equation*} for a triple $(a, b, m)$ of continuous, symmetric bilinear forms on a real separable Hilbert space $V$ and nonlinear form $F$. This problem is a natural abstraction of nonlinear problems that occur for a large class of differential operators, various elliptic pde's with nonlinearities in either the differential equation and/or the boundary conditions being a special subclass. First, a Fredholm alternative for the associated linear two-parameter eigenvalue problem is developed, and then this is used to construct a nonlinear version of the Fredholm alternative. Lastly, the Steklov-Robin Fredholm equation is used to exemplify the abstract results.
期刊介绍:
Topological Methods in Nonlinear Analysis (TMNA) publishes research and survey papers on a wide range of nonlinear analysis, giving preference to those that employ topological methods. Papers in topology that are of interest in the treatment of nonlinear problems may also be included.