{"title":"一类变指数超临界hsamnon方程的基态解","authors":"Xiaojing Feng","doi":"10.12775/tmna.2022.065","DOIUrl":null,"url":null,"abstract":"This paper is concerned with the following supercritical Hénon equation with variable exponent $$ \\begin{cases} -\\Delta u=|x|^{\\alpha}|u|^{2^*_\\alpha-2+|x|^\\beta}u&\\text{in } B,\\\\ u=0 &\\text{on } \\partial B, \\end{cases} $$% where $B\\subset\\mathbb{R}^N$ $(N\\geq 3)$ is the unit ball, $\\alpha\\!> \\!0$, $ 0\\!< \\!\\beta\\!< \\!\\min\\{(N\\!+\\!\\alpha)/2,N\\!-\\!2\\}$ and $2^*_\\alpha=({2N+2\\alpha})/({N-2})$. We obtain the existence of positive ground state solution by applying the mountain pass theorem, concentration-compactness principle and approximation techniques.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Ground state solution for a class of supercritical Hénon equation with variable exponent\",\"authors\":\"Xiaojing Feng\",\"doi\":\"10.12775/tmna.2022.065\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper is concerned with the following supercritical Hénon equation with variable exponent $$ \\\\begin{cases} -\\\\Delta u=|x|^{\\\\alpha}|u|^{2^*_\\\\alpha-2+|x|^\\\\beta}u&\\\\text{in } B,\\\\\\\\ u=0 &\\\\text{on } \\\\partial B, \\\\end{cases} $$% where $B\\\\subset\\\\mathbb{R}^N$ $(N\\\\geq 3)$ is the unit ball, $\\\\alpha\\\\!> \\\\!0$, $ 0\\\\!< \\\\!\\\\beta\\\\!< \\\\!\\\\min\\\\{(N\\\\!+\\\\!\\\\alpha)/2,N\\\\!-\\\\!2\\\\}$ and $2^*_\\\\alpha=({2N+2\\\\alpha})/({N-2})$. We obtain the existence of positive ground state solution by applying the mountain pass theorem, concentration-compactness principle and approximation techniques.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2023-09-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.12775/tmna.2022.065\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.12775/tmna.2022.065","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
本文研究了下列变指数超临界hsamnon方程 $$ \begin{cases} -\Delta u=|x|^{\alpha}|u|^{2^*_\alpha-2+|x|^\beta}u&\text{in } B,\\ u=0 &\text{on } \partial B, \end{cases} $$% where $B\subset\mathbb{R}^N$ $(N\geq 3)$ is the unit ball, $\alpha\!> \!0$, $ 0\!< \!\beta\!< \!\min\{(N\!+\!\alpha)/2,N\!-\!2\}$ and $2^*_\alpha=({2N+2\alpha})/({N-2})$. We obtain the existence of positive ground state solution by applying the mountain pass theorem, concentration-compactness principle and approximation techniques.
Ground state solution for a class of supercritical Hénon equation with variable exponent
This paper is concerned with the following supercritical Hénon equation with variable exponent $$ \begin{cases} -\Delta u=|x|^{\alpha}|u|^{2^*_\alpha-2+|x|^\beta}u&\text{in } B,\\ u=0 &\text{on } \partial B, \end{cases} $$% where $B\subset\mathbb{R}^N$ $(N\geq 3)$ is the unit ball, $\alpha\!> \!0$, $ 0\!< \!\beta\!< \!\min\{(N\!+\!\alpha)/2,N\!-\!2\}$ and $2^*_\alpha=({2N+2\alpha})/({N-2})$. We obtain the existence of positive ground state solution by applying the mountain pass theorem, concentration-compactness principle and approximation techniques.