不定分数阶Schrödinger-Poisson系统的三个正解

IF 0.7 4区 数学 Q2 MATHEMATICS
Guofeng Che, Tsung-fang Wu
{"title":"不定分数阶Schrödinger-Poisson系统的三个正解","authors":"Guofeng Che, Tsung-fang Wu","doi":"10.12775/tmna.2022.046","DOIUrl":null,"url":null,"abstract":"In this paper, we are concerned with the following fractionalSchrödinger-Poisson systems with concave-convex nonlinearities: \\begin{equation*} \\begin{cases} (-\\Delta )^{s}u+u+\\mu l(x)\\phi u=f(x)|u|^{p-2}u+g(x)|u|^{q-2}u &amp; \\text{in }\\mathbb{R}^{3}, \\\\ (-\\Delta )^{t}\\phi =l(x)u^{2} &amp; \\text{in }\\mathbb{R}^{3},% \\end{cases} \\end{equation*} where ${1}/{2}< t\\leq s< 1$, $1< q< 2< p< \\min \\{4,2_{s}^{\\ast }\\}$, $2_{s}^{\\ast }={6}/({3-2s})$, and $\\mu > 0$ is a parameter, $f\\in C\\big(\\mathbb{R}^{3}\\big)$ is sign-changing in $\\mathbb{R}^{3}$ and $g\\in L^{p/(p-q)}\\big(\\mathbb{R}^{3}\\big)$. Under some suitable assumptions on $l(x)$, $f(x)$ and $g(x)$, we explore that the energy functional corresponding to the system is coercive and bounded below on $H^{\\alpha }\\big(\\mathbb{R}^{3}\\big)$ which gets a positive solution. Furthermore, we constructed some new estimation techniques, and obtained other two positive solutions. Recent results from the literature are generally improved and extended.","PeriodicalId":23130,"journal":{"name":"Topological Methods in Nonlinear Analysis","volume":"2 1","pages":"0"},"PeriodicalIF":0.7000,"publicationDate":"2023-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Three positive solutions for the indefinite fractional Schrödinger-Poisson systems\",\"authors\":\"Guofeng Che, Tsung-fang Wu\",\"doi\":\"10.12775/tmna.2022.046\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we are concerned with the following fractionalSchrödinger-Poisson systems with concave-convex nonlinearities: \\\\begin{equation*} \\\\begin{cases} (-\\\\Delta )^{s}u+u+\\\\mu l(x)\\\\phi u=f(x)|u|^{p-2}u+g(x)|u|^{q-2}u &amp; \\\\text{in }\\\\mathbb{R}^{3}, \\\\\\\\ (-\\\\Delta )^{t}\\\\phi =l(x)u^{2} &amp; \\\\text{in }\\\\mathbb{R}^{3},% \\\\end{cases} \\\\end{equation*} where ${1}/{2}< t\\\\leq s< 1$, $1< q< 2< p< \\\\min \\\\{4,2_{s}^{\\\\ast }\\\\}$, $2_{s}^{\\\\ast }={6}/({3-2s})$, and $\\\\mu > 0$ is a parameter, $f\\\\in C\\\\big(\\\\mathbb{R}^{3}\\\\big)$ is sign-changing in $\\\\mathbb{R}^{3}$ and $g\\\\in L^{p/(p-q)}\\\\big(\\\\mathbb{R}^{3}\\\\big)$. Under some suitable assumptions on $l(x)$, $f(x)$ and $g(x)$, we explore that the energy functional corresponding to the system is coercive and bounded below on $H^{\\\\alpha }\\\\big(\\\\mathbb{R}^{3}\\\\big)$ which gets a positive solution. Furthermore, we constructed some new estimation techniques, and obtained other two positive solutions. Recent results from the literature are generally improved and extended.\",\"PeriodicalId\":23130,\"journal\":{\"name\":\"Topological Methods in Nonlinear Analysis\",\"volume\":\"2 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2023-09-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Topological Methods in Nonlinear Analysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.12775/tmna.2022.046\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Topological Methods in Nonlinear Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.12775/tmna.2022.046","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们关注以下fractionalSchrödinger-Poisson凹凸非线性系统:\begin{equation*} \begin{cases} (-\Delta)^{s}u+u+\mu l(x)\phi u=f(x)|u|^{p-2}u+g(x)|u|^{q-2}u &R \文本{}\ mathbb{} ^{3}, \ \(- \δ)^ {t} \φ= l (x) u ^ {2},R \文本{}\ mathbb{} ^{3}, % \{病例}\{方程*}结束结束,$ {1}/ {2}& lt;t \ leq s<1 $, $ 1 & lt;q<2 & lt;术中;\敏\{4 2 _{年代}^ {\ ast} \} $, $ 2 _{年代}^ {\ ast} ={6} /({3}),美元和美元\μ比;0美元是一个参数,用C f \ \大美元(\ mathbb {R} ^{3} \大)符号变换在美元\ mathbb {R} ^{3} $和$ g \ L ^ {p / (p q)} \大(\ mathbb {R} ^{3} \大)美元。在$l(x)$、$f(x)$和$g(x)$的适当假设下,探讨了系统对应的能量泛函在$H^{\alpha}\big(\mathbb{R}^{3}\big)$上是强制有界的,并得到了正解。此外,我们构造了一些新的估计技术,并得到了另外两个正解。最近的文献结果普遍得到了改进和扩展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Three positive solutions for the indefinite fractional Schrödinger-Poisson systems
In this paper, we are concerned with the following fractionalSchrödinger-Poisson systems with concave-convex nonlinearities: \begin{equation*} \begin{cases} (-\Delta )^{s}u+u+\mu l(x)\phi u=f(x)|u|^{p-2}u+g(x)|u|^{q-2}u & \text{in }\mathbb{R}^{3}, \\ (-\Delta )^{t}\phi =l(x)u^{2} & \text{in }\mathbb{R}^{3},% \end{cases} \end{equation*} where ${1}/{2}< t\leq s< 1$, $1< q< 2< p< \min \{4,2_{s}^{\ast }\}$, $2_{s}^{\ast }={6}/({3-2s})$, and $\mu > 0$ is a parameter, $f\in C\big(\mathbb{R}^{3}\big)$ is sign-changing in $\mathbb{R}^{3}$ and $g\in L^{p/(p-q)}\big(\mathbb{R}^{3}\big)$. Under some suitable assumptions on $l(x)$, $f(x)$ and $g(x)$, we explore that the energy functional corresponding to the system is coercive and bounded below on $H^{\alpha }\big(\mathbb{R}^{3}\big)$ which gets a positive solution. Furthermore, we constructed some new estimation techniques, and obtained other two positive solutions. Recent results from the literature are generally improved and extended.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.00
自引率
0.00%
发文量
57
审稿时长
>12 weeks
期刊介绍: Topological Methods in Nonlinear Analysis (TMNA) publishes research and survey papers on a wide range of nonlinear analysis, giving preference to those that employ topological methods. Papers in topology that are of interest in the treatment of nonlinear problems may also be included.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信