lisamadard型$\ φ $-拉普拉斯方程周期解的存在性

Pub Date : 2023-09-23 DOI:10.12775/tmna.2022.067
Congmin Yang, Zaihong Wang
{"title":"lisamadard型$\\ φ $-拉普拉斯方程周期解的存在性","authors":"Congmin Yang, Zaihong Wang","doi":"10.12775/tmna.2022.067","DOIUrl":null,"url":null,"abstract":"In this paper, we study the existence of periodic solutions for a Liénard type $\\phi$-Laplacian equation $$ (\\phi(x'))'+f(x)x'+g(x)=p(t). $$ We prove a continuation lemma and use it to prove the existence of periodic solutions for above equation when $g$ or $G$ (the primitive of $g$) satisfies some one-sided or bilateral growth conditions and $F$ (the primitive of $f$) satisfies sublinear condition.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the existence of periodic solutions for Liénard type $\\\\phi$-Laplacian equation\",\"authors\":\"Congmin Yang, Zaihong Wang\",\"doi\":\"10.12775/tmna.2022.067\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we study the existence of periodic solutions for a Liénard type $\\\\phi$-Laplacian equation $$ (\\\\phi(x'))'+f(x)x'+g(x)=p(t). $$ We prove a continuation lemma and use it to prove the existence of periodic solutions for above equation when $g$ or $G$ (the primitive of $g$) satisfies some one-sided or bilateral growth conditions and $F$ (the primitive of $f$) satisfies sublinear condition.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2023-09-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.12775/tmna.2022.067\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.12775/tmna.2022.067","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了一类lisamadard型$\phi$ - laplace方程$$ (\phi(x'))'+f(x)x'+g(x)=p(t). $$周期解的存在性,证明了一个延拓引理,并利用它证明了当$g$或$G$ ($g$的原语)满足某些单侧或双侧增长条件,$F$ ($f$的原语)满足次线性条件时,上述方程周期解的存在性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
On the existence of periodic solutions for Liénard type $\phi$-Laplacian equation
In this paper, we study the existence of periodic solutions for a Liénard type $\phi$-Laplacian equation $$ (\phi(x'))'+f(x)x'+g(x)=p(t). $$ We prove a continuation lemma and use it to prove the existence of periodic solutions for above equation when $g$ or $G$ (the primitive of $g$) satisfies some one-sided or bilateral growth conditions and $F$ (the primitive of $f$) satisfies sublinear condition.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信