推理类型的算子对应物

IF 0.4 2区 数学 Q4 LOGIC
Urszula Wybraniec-Skardowska
{"title":"推理类型的算子对应物","authors":"Urszula Wybraniec-Skardowska","doi":"10.1007/s11787-023-00339-7","DOIUrl":null,"url":null,"abstract":"Abstract Logical and philosophical literature provides different classifications of reasoning. In the Polish literature on the subject, for instance, there are three popular ones accepted by representatives of the Lvov-Warsaw School: Jan Łukasiewicz, Tadeusz Czeżowski and Kazimierz Ajdukiewicz (Ajdukiewicz in Logika pragmatyczna [Pragmatic Logic]. PWN, Warsaw (1965, 2nd ed. 1974). Translated as: Pragmatic Logic. Reidel &amp; PWN, Dordrecht, 1975). The author of this paper, having modified those classifications, distinguished the following types of reasoning: (1) deductive and (2) non-deductive, and additionally two types of them in each of the two, depending on the manner of combining their premises with the conclusion through the relation of classical logical entailment. Consequently, the four types of reasoning: unilateral deductive (incl. its sub-types: deductive inference and proof), bilateral deductive (incl. complete induction), and reductive (incl. the sub-types: explanation and verification), logically nonvaluable (incl. inference by analogy, statistic inference), correspond to four operators of derivability. They are defined formally on the ground of Tarski’s axiomatic theory of deductive systems, by means of the consequence operation Cn (Tarski in Monatshefte Math Phys 37:361–404, 1930a, C R Soc Sci Lett Vars 23:22–29, 1930b). Also, certain metalogical properties of these operators are given, as well as their relations with Tarski’s consequence operations $$Cn^+$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:mi>C</mml:mi> <mml:msup> <mml:mi>n</mml:mi> <mml:mo>+</mml:mo> </mml:msup> </mml:mrow> </mml:math> ( $$Cn^+ = Cn$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:mi>C</mml:mi> <mml:msup> <mml:mi>n</mml:mi> <mml:mo>+</mml:mo> </mml:msup> <mml:mo>=</mml:mo> <mml:mi>C</mml:mi> <mml:mi>n</mml:mi> </mml:mrow> </mml:math> ) and dual consequences $$Cn^{-1}$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:mi>C</mml:mi> <mml:msup> <mml:mi>n</mml:mi> <mml:mrow> <mml:mo>-</mml:mo> <mml:mn>1</mml:mn> </mml:mrow> </mml:msup> </mml:mrow> </mml:math> (Słupecki in Zeszyty Naukowe Uniwersytetu Wrocławskiego Seria B Nr 3:33–40, 1959, Słupecki et al. in Stud Log 29:76–123, 1971, Wybraniec-Skardowska, in: Wybraniec-Skardowska, Bryll (eds) Z badań nad teorią zdań odrzuconych [Studies in the Theory of Rejected Propositions], Series B, Studia i Monografie, Zeszyty Naukowe Wyższej Szkoły Pedagogicznej w Opolu, Opole, 1969), and $$Cn^-$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:mi>C</mml:mi> <mml:msup> <mml:mi>n</mml:mi> <mml:mo>-</mml:mo> </mml:msup> </mml:mrow> </mml:math> (Wójcicki in Bull Sect Log 2(2):54–57, 1973)).","PeriodicalId":48558,"journal":{"name":"Logica Universalis","volume":"11 1","pages":"0"},"PeriodicalIF":0.4000,"publicationDate":"2023-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Operator Counterparts of Types of Reasoning\",\"authors\":\"Urszula Wybraniec-Skardowska\",\"doi\":\"10.1007/s11787-023-00339-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Logical and philosophical literature provides different classifications of reasoning. In the Polish literature on the subject, for instance, there are three popular ones accepted by representatives of the Lvov-Warsaw School: Jan Łukasiewicz, Tadeusz Czeżowski and Kazimierz Ajdukiewicz (Ajdukiewicz in Logika pragmatyczna [Pragmatic Logic]. PWN, Warsaw (1965, 2nd ed. 1974). Translated as: Pragmatic Logic. Reidel &amp; PWN, Dordrecht, 1975). The author of this paper, having modified those classifications, distinguished the following types of reasoning: (1) deductive and (2) non-deductive, and additionally two types of them in each of the two, depending on the manner of combining their premises with the conclusion through the relation of classical logical entailment. Consequently, the four types of reasoning: unilateral deductive (incl. its sub-types: deductive inference and proof), bilateral deductive (incl. complete induction), and reductive (incl. the sub-types: explanation and verification), logically nonvaluable (incl. inference by analogy, statistic inference), correspond to four operators of derivability. They are defined formally on the ground of Tarski’s axiomatic theory of deductive systems, by means of the consequence operation Cn (Tarski in Monatshefte Math Phys 37:361–404, 1930a, C R Soc Sci Lett Vars 23:22–29, 1930b). Also, certain metalogical properties of these operators are given, as well as their relations with Tarski’s consequence operations $$Cn^+$$ <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\"> <mml:mrow> <mml:mi>C</mml:mi> <mml:msup> <mml:mi>n</mml:mi> <mml:mo>+</mml:mo> </mml:msup> </mml:mrow> </mml:math> ( $$Cn^+ = Cn$$ <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\"> <mml:mrow> <mml:mi>C</mml:mi> <mml:msup> <mml:mi>n</mml:mi> <mml:mo>+</mml:mo> </mml:msup> <mml:mo>=</mml:mo> <mml:mi>C</mml:mi> <mml:mi>n</mml:mi> </mml:mrow> </mml:math> ) and dual consequences $$Cn^{-1}$$ <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\"> <mml:mrow> <mml:mi>C</mml:mi> <mml:msup> <mml:mi>n</mml:mi> <mml:mrow> <mml:mo>-</mml:mo> <mml:mn>1</mml:mn> </mml:mrow> </mml:msup> </mml:mrow> </mml:math> (Słupecki in Zeszyty Naukowe Uniwersytetu Wrocławskiego Seria B Nr 3:33–40, 1959, Słupecki et al. in Stud Log 29:76–123, 1971, Wybraniec-Skardowska, in: Wybraniec-Skardowska, Bryll (eds) Z badań nad teorią zdań odrzuconych [Studies in the Theory of Rejected Propositions], Series B, Studia i Monografie, Zeszyty Naukowe Wyższej Szkoły Pedagogicznej w Opolu, Opole, 1969), and $$Cn^-$$ <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\"> <mml:mrow> <mml:mi>C</mml:mi> <mml:msup> <mml:mi>n</mml:mi> <mml:mo>-</mml:mo> </mml:msup> </mml:mrow> </mml:math> (Wójcicki in Bull Sect Log 2(2):54–57, 1973)).\",\"PeriodicalId\":48558,\"journal\":{\"name\":\"Logica Universalis\",\"volume\":\"11 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2023-09-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Logica Universalis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s11787-023-00339-7\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"LOGIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Logica Universalis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s11787-023-00339-7","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"LOGIC","Score":null,"Total":0}
引用次数: 0

摘要

逻辑和哲学文献提供了不同的推理分类。例如,在波兰关于这一主题的文献中,利沃夫-华沙学派的代表接受了三个流行的说法:Jan Łukasiewicz, Tadeusz Czeżowski和Kazimierz Ajdukiewicz (Ajdukiewicz In Logika pragmatyczna[语用逻辑])。华沙PWN(1965年,第2版。1974年)。译为:语用逻辑。赖德尔&;PWN,多德雷赫特,1975年)。本文的作者对这些分类进行了修改,区分了以下类型的推理:(1)演绎推理和(2)非演绎推理,并根据它们的前提与结论通过经典逻辑蕴涵关系结合的方式,在这两种推理中分别增加了两种类型。因此,四种推理类型:单边演绎(包括其子类型:演绎推理和证明),双边演绎(包括完全归纳),还原(包括子类型:解释和验证),逻辑无价值(包括类比推理,统计推理),对应于四个可导算子。它们是在Tarski演绎系统的公理化理论的基础上,通过推论运算Cn正式定义的(Tarski in Monatshefte Math - Phys 37:31 61 - 404, 1930a, C R社会科学,Vars 23:22 - 29,1930b)。此外,还给出了这些算子的某些元学性质,以及它们与Tarski推论运算$$Cn^+$$ C n + ($$Cn^+ = Cn$$ C n + = C n)和对偶结果$$Cn^{-1}$$ C n - 1 (Słupecki in Zeszyty Naukowe Uniwersytetu Wrocławskiego Seria B Nr 3:33-40, 1959, Słupecki等人在Stud Log 29:76-123, 1971, wybraniecskardowska, in:wybraniek - skardowska, Bryll(编)Z badazinad teoriozdaiodrzuconych[在拒绝命题理论的研究],系列B, Studia i Monografie, Zeszyty Naukowe Wyższej Szkoły Pedagogicznej w Opolu, Opole, 1969),和$$Cn^-$$ C n - (Wójcicki在公牛节日志2(2):54-57,1973))。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Operator Counterparts of Types of Reasoning
Abstract Logical and philosophical literature provides different classifications of reasoning. In the Polish literature on the subject, for instance, there are three popular ones accepted by representatives of the Lvov-Warsaw School: Jan Łukasiewicz, Tadeusz Czeżowski and Kazimierz Ajdukiewicz (Ajdukiewicz in Logika pragmatyczna [Pragmatic Logic]. PWN, Warsaw (1965, 2nd ed. 1974). Translated as: Pragmatic Logic. Reidel & PWN, Dordrecht, 1975). The author of this paper, having modified those classifications, distinguished the following types of reasoning: (1) deductive and (2) non-deductive, and additionally two types of them in each of the two, depending on the manner of combining their premises with the conclusion through the relation of classical logical entailment. Consequently, the four types of reasoning: unilateral deductive (incl. its sub-types: deductive inference and proof), bilateral deductive (incl. complete induction), and reductive (incl. the sub-types: explanation and verification), logically nonvaluable (incl. inference by analogy, statistic inference), correspond to four operators of derivability. They are defined formally on the ground of Tarski’s axiomatic theory of deductive systems, by means of the consequence operation Cn (Tarski in Monatshefte Math Phys 37:361–404, 1930a, C R Soc Sci Lett Vars 23:22–29, 1930b). Also, certain metalogical properties of these operators are given, as well as their relations with Tarski’s consequence operations $$Cn^+$$ C n + ( $$Cn^+ = Cn$$ C n + = C n ) and dual consequences $$Cn^{-1}$$ C n - 1 (Słupecki in Zeszyty Naukowe Uniwersytetu Wrocławskiego Seria B Nr 3:33–40, 1959, Słupecki et al. in Stud Log 29:76–123, 1971, Wybraniec-Skardowska, in: Wybraniec-Skardowska, Bryll (eds) Z badań nad teorią zdań odrzuconych [Studies in the Theory of Rejected Propositions], Series B, Studia i Monografie, Zeszyty Naukowe Wyższej Szkoły Pedagogicznej w Opolu, Opole, 1969), and $$Cn^-$$ C n - (Wójcicki in Bull Sect Log 2(2):54–57, 1973)).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Logica Universalis
Logica Universalis Mathematics-Logic
CiteScore
1.30
自引率
12.50%
发文量
25
期刊介绍: Logica Universalis (LU) publishes peer-reviewed research papers related to universal features of logics. Topics include general tools and techniques for studying already existing logics and building new ones, the study of classes of logics, the scope of validity and the domain of application of fundamental theorems, and also philosophical and historical aspects of general concepts of logic.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信