{"title":"扩大版Yamada-Ota - Xue模型对Eyring-Powell混合纳米流体滞点流动的认识","authors":"Farhan Ali, Syed Sohaib Zafar, Soofia Iftikhar, Muhammad Faizan Ahmad, Anwar Saeed","doi":"10.1177/16878132231206922","DOIUrl":null,"url":null,"abstract":"This paper shows the stagnant point flow of Powell-Eyring hybrid nanofluids due to a stretching sheet. The Xue and Yamada-Ota based on hybrid nanoliquid have been subjected to a comparison study that has been scrutinized. The suspension of two nanoparticles [Formula: see text] and [Formula: see text] with base fluid Ethylene glycol ([Formula: see text]) is studied through hybrid nanoliquid. With the implementation of the noteworthy suitable alteration, the system of equations in terms of ODEs is established. The bvp4c technique is then applied to obtain the numerical solution of reduced ODEs. The significance of physical quantities over thermal, velocity, force friction, and heat transport are elaborated in tabular form and also in graphical form. During this analysis, the Xue model produced less heat transport as compared to the Yamada-Ota hybrid nanofluid. The result shows that the Xue model produces less heat gradient equated to the Yamada-Ota model. The velocity profile is enhanced and the thermal profile has decayed with the larger value of the fluid parameter.","PeriodicalId":49110,"journal":{"name":"Advances in Mechanical Engineering","volume":null,"pages":null},"PeriodicalIF":1.9000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Insight into stagnant point flow of Eyring-Powell hybrid nanofluid comprising on enlarged version of Yamada-Ota and Xue model\",\"authors\":\"Farhan Ali, Syed Sohaib Zafar, Soofia Iftikhar, Muhammad Faizan Ahmad, Anwar Saeed\",\"doi\":\"10.1177/16878132231206922\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper shows the stagnant point flow of Powell-Eyring hybrid nanofluids due to a stretching sheet. The Xue and Yamada-Ota based on hybrid nanoliquid have been subjected to a comparison study that has been scrutinized. The suspension of two nanoparticles [Formula: see text] and [Formula: see text] with base fluid Ethylene glycol ([Formula: see text]) is studied through hybrid nanoliquid. With the implementation of the noteworthy suitable alteration, the system of equations in terms of ODEs is established. The bvp4c technique is then applied to obtain the numerical solution of reduced ODEs. The significance of physical quantities over thermal, velocity, force friction, and heat transport are elaborated in tabular form and also in graphical form. During this analysis, the Xue model produced less heat transport as compared to the Yamada-Ota hybrid nanofluid. The result shows that the Xue model produces less heat gradient equated to the Yamada-Ota model. The velocity profile is enhanced and the thermal profile has decayed with the larger value of the fluid parameter.\",\"PeriodicalId\":49110,\"journal\":{\"name\":\"Advances in Mechanical Engineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2023-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Mechanical Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1177/16878132231206922\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Mechanical Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/16878132231206922","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
Insight into stagnant point flow of Eyring-Powell hybrid nanofluid comprising on enlarged version of Yamada-Ota and Xue model
This paper shows the stagnant point flow of Powell-Eyring hybrid nanofluids due to a stretching sheet. The Xue and Yamada-Ota based on hybrid nanoliquid have been subjected to a comparison study that has been scrutinized. The suspension of two nanoparticles [Formula: see text] and [Formula: see text] with base fluid Ethylene glycol ([Formula: see text]) is studied through hybrid nanoliquid. With the implementation of the noteworthy suitable alteration, the system of equations in terms of ODEs is established. The bvp4c technique is then applied to obtain the numerical solution of reduced ODEs. The significance of physical quantities over thermal, velocity, force friction, and heat transport are elaborated in tabular form and also in graphical form. During this analysis, the Xue model produced less heat transport as compared to the Yamada-Ota hybrid nanofluid. The result shows that the Xue model produces less heat gradient equated to the Yamada-Ota model. The velocity profile is enhanced and the thermal profile has decayed with the larger value of the fluid parameter.
期刊介绍:
Advances in Mechanical Engineering (AIME) is a JCR Ranked, peer-reviewed, open access journal which publishes a wide range of original research and review articles. The journal Editorial Board welcomes manuscripts in both fundamental and applied research areas, and encourages submissions which contribute novel and innovative insights to the field of mechanical engineering