多项式零点和临界点的分布及Sendov猜想

Pub Date : 2023-10-01 DOI:10.3103/s1068362323050084
G. M. Sofi, W. M. Shah
{"title":"多项式零点和临界点的分布及Sendov猜想","authors":"G. M. Sofi, W. M. Shah","doi":"10.3103/s1068362323050084","DOIUrl":null,"url":null,"abstract":"Abstract According to the Gauss–Lucas theorem, the critical points of a complex polynomial $$p(z):=\\sum_{j=0}^{n}a_{j}z^{j}$$ where $$a_{j}\\in\\mathbb{C}$$ always lie in the convex hull of its zeros. In this paper, we prove certain relations between the distribution of zeros of a polynomial and its critical points. Using these relations, we prove the well-known Sendov’s conjecture for certain special cases.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Distribution of Zeros and Critical Points of a Polynomial, and Sendov’s Conjecture\",\"authors\":\"G. M. Sofi, W. M. Shah\",\"doi\":\"10.3103/s1068362323050084\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract According to the Gauss–Lucas theorem, the critical points of a complex polynomial $$p(z):=\\\\sum_{j=0}^{n}a_{j}z^{j}$$ where $$a_{j}\\\\in\\\\mathbb{C}$$ always lie in the convex hull of its zeros. In this paper, we prove certain relations between the distribution of zeros of a polynomial and its critical points. Using these relations, we prove the well-known Sendov’s conjecture for certain special cases.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2023-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3103/s1068362323050084\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3103/s1068362323050084","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

摘要根据高斯-卢卡斯定理,给出了复多项式$$p(z):=\sum_{j=0}^{n}a_{j}z^{j}$$的临界点,其中$$a_{j}\in\mathbb{C}$$总是位于其零点的凸包内。本文证明了多项式的零点分布与其临界点之间的某些关系。利用这些关系,我们对某些特殊情况证明了著名的先多夫猜想。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Distribution of Zeros and Critical Points of a Polynomial, and Sendov’s Conjecture

分享
查看原文
Distribution of Zeros and Critical Points of a Polynomial, and Sendov’s Conjecture
Abstract According to the Gauss–Lucas theorem, the critical points of a complex polynomial $$p(z):=\sum_{j=0}^{n}a_{j}z^{j}$$ where $$a_{j}\in\mathbb{C}$$ always lie in the convex hull of its zeros. In this paper, we prove certain relations between the distribution of zeros of a polynomial and its critical points. Using these relations, we prove the well-known Sendov’s conjecture for certain special cases.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信