多项式零点和临界点的分布及Sendov猜想

IF 0.3 4区 数学 Q4 MATHEMATICS
G. M. Sofi, W. M. Shah
{"title":"多项式零点和临界点的分布及Sendov猜想","authors":"G. M. Sofi, W. M. Shah","doi":"10.3103/s1068362323050084","DOIUrl":null,"url":null,"abstract":"Abstract According to the Gauss–Lucas theorem, the critical points of a complex polynomial $$p(z):=\\sum_{j=0}^{n}a_{j}z^{j}$$ where $$a_{j}\\in\\mathbb{C}$$ always lie in the convex hull of its zeros. In this paper, we prove certain relations between the distribution of zeros of a polynomial and its critical points. Using these relations, we prove the well-known Sendov’s conjecture for certain special cases.","PeriodicalId":54854,"journal":{"name":"Journal of Contemporary Mathematical Analysis-Armenian Academy of Sciences","volume":"7 1","pages":"0"},"PeriodicalIF":0.3000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Distribution of Zeros and Critical Points of a Polynomial, and Sendov’s Conjecture\",\"authors\":\"G. M. Sofi, W. M. Shah\",\"doi\":\"10.3103/s1068362323050084\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract According to the Gauss–Lucas theorem, the critical points of a complex polynomial $$p(z):=\\\\sum_{j=0}^{n}a_{j}z^{j}$$ where $$a_{j}\\\\in\\\\mathbb{C}$$ always lie in the convex hull of its zeros. In this paper, we prove certain relations between the distribution of zeros of a polynomial and its critical points. Using these relations, we prove the well-known Sendov’s conjecture for certain special cases.\",\"PeriodicalId\":54854,\"journal\":{\"name\":\"Journal of Contemporary Mathematical Analysis-Armenian Academy of Sciences\",\"volume\":\"7 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.3000,\"publicationDate\":\"2023-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Contemporary Mathematical Analysis-Armenian Academy of Sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3103/s1068362323050084\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Contemporary Mathematical Analysis-Armenian Academy of Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3103/s1068362323050084","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

摘要根据高斯-卢卡斯定理,给出了复多项式$$p(z):=\sum_{j=0}^{n}a_{j}z^{j}$$的临界点,其中$$a_{j}\in\mathbb{C}$$总是位于其零点的凸包内。本文证明了多项式的零点分布与其临界点之间的某些关系。利用这些关系,我们对某些特殊情况证明了著名的先多夫猜想。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Distribution of Zeros and Critical Points of a Polynomial, and Sendov’s Conjecture

Distribution of Zeros and Critical Points of a Polynomial, and Sendov’s Conjecture
Abstract According to the Gauss–Lucas theorem, the critical points of a complex polynomial $$p(z):=\sum_{j=0}^{n}a_{j}z^{j}$$ where $$a_{j}\in\mathbb{C}$$ always lie in the convex hull of its zeros. In this paper, we prove certain relations between the distribution of zeros of a polynomial and its critical points. Using these relations, we prove the well-known Sendov’s conjecture for certain special cases.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.70
自引率
0.00%
发文量
32
审稿时长
>12 weeks
期刊介绍: Journal of Contemporary Mathematical Analysis (Armenian Academy of Sciences) is an outlet for research stemming from the widely acclaimed Armenian school of theory of functions, this journal today continues the traditions of that school in the area of general analysis. A very prolific group of mathematicians in Yerevan contribute to this leading mathematics journal in the following fields: real and complex analysis; approximations; boundary value problems; integral and stochastic geometry; differential equations; probability; integral equations; algebra.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信