复多项式算子保持Turán-Type不等式的推广

Pub Date : 2023-10-01 DOI:10.3103/s1068362323050047
S. A. Malik, B. A. Zargar
{"title":"复多项式算子保持Turán-Type不等式的推广","authors":"S. A. Malik, B. A. Zargar","doi":"10.3103/s1068362323050047","DOIUrl":null,"url":null,"abstract":"Abstract Let $$W(\\zeta)=(a_{0}+a_{1}\\zeta+...+a_{n}\\zeta^{n})$$ be a polynomial of degree $$n$$ having all its zeros in $$\\mathbb{T}_{k}\\cup\\mathbb{E}^{-}_{k}$$ , $$k\\geq 1$$ , then for every real or complex number $$\\alpha$$ with $$|\\alpha|\\geq 1+k+k^{n}$$ , Govil and McTume [7] showed that the following inequality holds $$\\max\\limits_{\\zeta\\in\\mathbb{T}_{1}}|D_{\\alpha}W(\\zeta)|\\geq n\\left(\\frac{|\\alpha|-k}{1+k^{n}}\\right)||W||+n\\left(\\frac{|\\alpha|-(1+k+k^{n})}{1+k^{n}}\\right)\\min\\limits_{\\zeta\\in\\mathbb{T}_{k}}|W(\\zeta)|.$$ In this paper, we have obtained a generalization of this inequality involving sequence of operators known as polar derivatives. In addition, the problem for the limiting case is also considered.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On a Generalization of an Operator Preserving Turán-Type Inequality for Complex Polynomials\",\"authors\":\"S. A. Malik, B. A. Zargar\",\"doi\":\"10.3103/s1068362323050047\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Let $$W(\\\\zeta)=(a_{0}+a_{1}\\\\zeta+...+a_{n}\\\\zeta^{n})$$ be a polynomial of degree $$n$$ having all its zeros in $$\\\\mathbb{T}_{k}\\\\cup\\\\mathbb{E}^{-}_{k}$$ , $$k\\\\geq 1$$ , then for every real or complex number $$\\\\alpha$$ with $$|\\\\alpha|\\\\geq 1+k+k^{n}$$ , Govil and McTume [7] showed that the following inequality holds $$\\\\max\\\\limits_{\\\\zeta\\\\in\\\\mathbb{T}_{1}}|D_{\\\\alpha}W(\\\\zeta)|\\\\geq n\\\\left(\\\\frac{|\\\\alpha|-k}{1+k^{n}}\\\\right)||W||+n\\\\left(\\\\frac{|\\\\alpha|-(1+k+k^{n})}{1+k^{n}}\\\\right)\\\\min\\\\limits_{\\\\zeta\\\\in\\\\mathbb{T}_{k}}|W(\\\\zeta)|.$$ In this paper, we have obtained a generalization of this inequality involving sequence of operators known as polar derivatives. In addition, the problem for the limiting case is also considered.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2023-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3103/s1068362323050047\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3103/s1068362323050047","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

摘要设$$W(\zeta)=(a_{0}+a_{1}\zeta+...+a_{n}\zeta^{n})$$为次多项式$$n$$,其全部为$$\mathbb{T}_{k}\cup\mathbb{E}^{-}_{k}$$, $$k\geq 1$$中的零,则对于含有$$|\alpha|\geq 1+k+k^{n}$$的每一个实数或复数$$\alpha$$, Govil和McTume[7]证明了以下不等式成立$$\max\limits_{\zeta\in\mathbb{T}_{1}}|D_{\alpha}W(\zeta)|\geq n\left(\frac{|\alpha|-k}{1+k^{n}}\right)||W||+n\left(\frac{|\alpha|-(1+k+k^{n})}{1+k^{n}}\right)\min\limits_{\zeta\in\mathbb{T}_{k}}|W(\zeta)|.$$在本文中,我们得到了这个不等式的一个推广,它涉及到称为极导数的算子序列。此外,还考虑了极限情况下的问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
On a Generalization of an Operator Preserving Turán-Type Inequality for Complex Polynomials
Abstract Let $$W(\zeta)=(a_{0}+a_{1}\zeta+...+a_{n}\zeta^{n})$$ be a polynomial of degree $$n$$ having all its zeros in $$\mathbb{T}_{k}\cup\mathbb{E}^{-}_{k}$$ , $$k\geq 1$$ , then for every real or complex number $$\alpha$$ with $$|\alpha|\geq 1+k+k^{n}$$ , Govil and McTume [7] showed that the following inequality holds $$\max\limits_{\zeta\in\mathbb{T}_{1}}|D_{\alpha}W(\zeta)|\geq n\left(\frac{|\alpha|-k}{1+k^{n}}\right)||W||+n\left(\frac{|\alpha|-(1+k+k^{n})}{1+k^{n}}\right)\min\limits_{\zeta\in\mathbb{T}_{k}}|W(\zeta)|.$$ In this paper, we have obtained a generalization of this inequality involving sequence of operators known as polar derivatives. In addition, the problem for the limiting case is also considered.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信