具有相关模态的Lambek微积分的范畴向量空间语义

McPheat, Lachlan, Sadrzadeh, Mehrnoosh, Wazni, Hadi, Wijnholds, Gijs
{"title":"具有相关模态的Lambek微积分的范畴向量空间语义","authors":"McPheat, Lachlan, Sadrzadeh, Mehrnoosh, Wazni, Hadi, Wijnholds, Gijs","doi":"10.32408/compositionality-5-2","DOIUrl":null,"url":null,"abstract":"We develop a categorical compositional distributional semantics for Lambek Calculus with a Relevant Modality !L*, which has a limited edition of the contraction and permutation rules. The categorical part of the semantics is a monoidal biclosed category with a coalgebra modality, very similar to the structure of a Differential Category. We instantiate this category to finite dimensional vector spaces and linear maps via \"quantisation\" functors and work with three concrete interpretations of the coalgebra modality. We apply the model to construct categorical and concrete semantic interpretations for the motivating example of !L*: the derivation of a phrase with a parasitic gap. The effectiveness of the concrete interpretations are evaluated via a disambiguation task, on an extension of a sentence disambiguation dataset to parasitic gap phrases, using BERT, Word2Vec, and FastText vectors and Relational tensors.","PeriodicalId":500901,"journal":{"name":"Compositionality","volume":"59 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Categorical Vector Space Semantics for Lambek Calculus with a Relevant Modality\",\"authors\":\"McPheat, Lachlan, Sadrzadeh, Mehrnoosh, Wazni, Hadi, Wijnholds, Gijs\",\"doi\":\"10.32408/compositionality-5-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We develop a categorical compositional distributional semantics for Lambek Calculus with a Relevant Modality !L*, which has a limited edition of the contraction and permutation rules. The categorical part of the semantics is a monoidal biclosed category with a coalgebra modality, very similar to the structure of a Differential Category. We instantiate this category to finite dimensional vector spaces and linear maps via \\\"quantisation\\\" functors and work with three concrete interpretations of the coalgebra modality. We apply the model to construct categorical and concrete semantic interpretations for the motivating example of !L*: the derivation of a phrase with a parasitic gap. The effectiveness of the concrete interpretations are evaluated via a disambiguation task, on an extension of a sentence disambiguation dataset to parasitic gap phrases, using BERT, Word2Vec, and FastText vectors and Relational tensors.\",\"PeriodicalId\":500901,\"journal\":{\"name\":\"Compositionality\",\"volume\":\"59 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-05-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Compositionality\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.32408/compositionality-5-2\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Compositionality","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.32408/compositionality-5-2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们开发了具有相关模态L*的Lambek微积分的范畴组合分布语义,该语义具有限定版的收缩和排列规则。语义的范畴部分是一个具有协代数模态的一元双闭范畴,与微分范畴的结构非常相似。我们通过“量化”函子实例化这一范畴到有限维向量空间和线性映射,并使用协代数模态的三种具体解释。我们应用该模型构建了L*的激励例子的分类和具体的语义解释:一个带有寄生间隙的短语的推导。具体解释的有效性通过消歧任务来评估,该任务使用BERT、Word2Vec和FastText向量和关系张量,将句子消歧数据集扩展到寄生间隙短语。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Categorical Vector Space Semantics for Lambek Calculus with a Relevant Modality
We develop a categorical compositional distributional semantics for Lambek Calculus with a Relevant Modality !L*, which has a limited edition of the contraction and permutation rules. The categorical part of the semantics is a monoidal biclosed category with a coalgebra modality, very similar to the structure of a Differential Category. We instantiate this category to finite dimensional vector spaces and linear maps via "quantisation" functors and work with three concrete interpretations of the coalgebra modality. We apply the model to construct categorical and concrete semantic interpretations for the motivating example of !L*: the derivation of a phrase with a parasitic gap. The effectiveness of the concrete interpretations are evaluated via a disambiguation task, on an extension of a sentence disambiguation dataset to parasitic gap phrases, using BERT, Word2Vec, and FastText vectors and Relational tensors.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.10
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信