衡量期权市场中的信息流:一种相对熵方法

IF 0.4 4区 经济学 Q4 BUSINESS, FINANCE
Eric André, Lorenz Schneider, Bertrand Tavin
{"title":"衡量期权市场中的信息流:一种相对熵方法","authors":"Eric André, Lorenz Schneider, Bertrand Tavin","doi":"10.3905/jod.2023.1.191","DOIUrl":null,"url":null,"abstract":"In this article, we propose a methodology for measuring the information flows that underpin option price movements and for analyzing the distribution of these flows. We develop a framework in which information flows can be measured in terms of the relative entropy between the risk-neutral distributions obtained from implied volatility data at different dates. We set up a numerical methodology to compute such quantities using an empirical market dataset that corresponds to options written on the S&P 500 index. This methodology uses Normal Inverse Gaussian distributions for the log-return of the index. We apply our method to six years of daily data, from 2015 to 2021, and find that options with short maturities capture a greater share of new information. We also use a mixture of two exponential distributions to analyze the distribution of the information flows obtained. In this mixture, one component corresponds to frequent small values and the other to less frequent high values.","PeriodicalId":40006,"journal":{"name":"Journal of Derivatives","volume":"32 1","pages":"0"},"PeriodicalIF":0.4000,"publicationDate":"2023-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Measuring Information Flows in Option Markets: A Relative Entropy Approach\",\"authors\":\"Eric André, Lorenz Schneider, Bertrand Tavin\",\"doi\":\"10.3905/jod.2023.1.191\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this article, we propose a methodology for measuring the information flows that underpin option price movements and for analyzing the distribution of these flows. We develop a framework in which information flows can be measured in terms of the relative entropy between the risk-neutral distributions obtained from implied volatility data at different dates. We set up a numerical methodology to compute such quantities using an empirical market dataset that corresponds to options written on the S&P 500 index. This methodology uses Normal Inverse Gaussian distributions for the log-return of the index. We apply our method to six years of daily data, from 2015 to 2021, and find that options with short maturities capture a greater share of new information. We also use a mixture of two exponential distributions to analyze the distribution of the information flows obtained. In this mixture, one component corresponds to frequent small values and the other to less frequent high values.\",\"PeriodicalId\":40006,\"journal\":{\"name\":\"Journal of Derivatives\",\"volume\":\"32 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2023-09-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Derivatives\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3905/jod.2023.1.191\",\"RegionNum\":4,\"RegionCategory\":\"经济学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"BUSINESS, FINANCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Derivatives","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3905/jod.2023.1.191","RegionNum":4,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BUSINESS, FINANCE","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们提出了一种方法来测量支撑期权价格变动的信息流,并分析这些信息流的分布。我们开发了一个框架,在这个框架中,信息流可以根据从不同日期的隐含波动率数据获得的风险中性分布之间的相对熵来衡量。我们建立了一种数值方法,使用与标普500指数期权相对应的经验市场数据集来计算这些数量。该方法使用正态反高斯分布作为指数的对数返回。我们将我们的方法应用于从2015年到2021年的六年每日数据,发现期限较短的期权捕获了更大份额的新信息。我们还使用两个指数分布的混合来分析所获得的信息流的分布。在这种混合中,一个分量对应于频繁的小值,另一个对应于频率较低的高值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Measuring Information Flows in Option Markets: A Relative Entropy Approach
In this article, we propose a methodology for measuring the information flows that underpin option price movements and for analyzing the distribution of these flows. We develop a framework in which information flows can be measured in terms of the relative entropy between the risk-neutral distributions obtained from implied volatility data at different dates. We set up a numerical methodology to compute such quantities using an empirical market dataset that corresponds to options written on the S&P 500 index. This methodology uses Normal Inverse Gaussian distributions for the log-return of the index. We apply our method to six years of daily data, from 2015 to 2021, and find that options with short maturities capture a greater share of new information. We also use a mixture of two exponential distributions to analyze the distribution of the information flows obtained. In this mixture, one component corresponds to frequent small values and the other to less frequent high values.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Derivatives
Journal of Derivatives Economics, Econometrics and Finance-Economics and Econometrics
CiteScore
1.30
自引率
14.30%
发文量
35
期刊介绍: The Journal of Derivatives (JOD) is the leading analytical journal on derivatives, providing detailed analyses of theoretical models and how they are used in practice. JOD gives you results-oriented analysis and provides full treatment of mathematical and statistical information on derivatives products and techniques. JOD includes articles about: •The latest valuation and hedging models for derivative instruments and securities •New tools and models for financial risk management •How to apply academic derivatives theory and research to real-world problems •Illustration and rigorous analysis of key innovations in derivative securities and derivative markets
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信