Negar Mohammadgholibeyki, Maria Jose Echeverria, Amir Safiey, Dustin Cook, Maria Koliou, Abbie B. Liel
{"title":"评估现有钢筋混凝土建筑抗震加固实现功能恢复目标的可行性","authors":"Negar Mohammadgholibeyki, Maria Jose Echeverria, Amir Safiey, Dustin Cook, Maria Koliou, Abbie B. Liel","doi":"10.1177/87552930231197669","DOIUrl":null,"url":null,"abstract":"Damage from past earthquakes has significantly hampered post-earthquake building function, threatening community resilience, and motivating consideration of functional recovery in building design and assessment. This study examines whether it is feasible to achieve functional recovery in retrofit of existing reinforced concrete buildings, focusing on seven buildings retrofit with various motivations and strategies. The seismic response of these buildings was nonlinearly simulated, and functional recovery was probabilistically assessed. The results show that retrofits targeting life safety may or may not achieve functional recovery goals. Achieving functional recovery depends especially on the reduction of drift demands and collapse probability. However, the acceleration increase associated with many retrofits can increase function loss due to the criticality of acceleration-sensitive nonstructural components if such components are not retrofitted. We also examine other performance metrics, that is, economic losses and immediate occupancy limits of ASCE/SEI 41, showing that these provide imprecise, and in the case of the immediate occupancy conservative, proxies for functional recovery.","PeriodicalId":11392,"journal":{"name":"Earthquake Spectra","volume":"32 1","pages":"0"},"PeriodicalIF":3.1000,"publicationDate":"2023-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Assessing the feasibility of achieving functional recovery goals through seismic retrofit of existing reinforced concrete buildings\",\"authors\":\"Negar Mohammadgholibeyki, Maria Jose Echeverria, Amir Safiey, Dustin Cook, Maria Koliou, Abbie B. Liel\",\"doi\":\"10.1177/87552930231197669\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Damage from past earthquakes has significantly hampered post-earthquake building function, threatening community resilience, and motivating consideration of functional recovery in building design and assessment. This study examines whether it is feasible to achieve functional recovery in retrofit of existing reinforced concrete buildings, focusing on seven buildings retrofit with various motivations and strategies. The seismic response of these buildings was nonlinearly simulated, and functional recovery was probabilistically assessed. The results show that retrofits targeting life safety may or may not achieve functional recovery goals. Achieving functional recovery depends especially on the reduction of drift demands and collapse probability. However, the acceleration increase associated with many retrofits can increase function loss due to the criticality of acceleration-sensitive nonstructural components if such components are not retrofitted. We also examine other performance metrics, that is, economic losses and immediate occupancy limits of ASCE/SEI 41, showing that these provide imprecise, and in the case of the immediate occupancy conservative, proxies for functional recovery.\",\"PeriodicalId\":11392,\"journal\":{\"name\":\"Earthquake Spectra\",\"volume\":\"32 1\",\"pages\":\"0\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2023-09-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Earthquake Spectra\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1177/87552930231197669\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, CIVIL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Earthquake Spectra","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/87552930231197669","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
Assessing the feasibility of achieving functional recovery goals through seismic retrofit of existing reinforced concrete buildings
Damage from past earthquakes has significantly hampered post-earthquake building function, threatening community resilience, and motivating consideration of functional recovery in building design and assessment. This study examines whether it is feasible to achieve functional recovery in retrofit of existing reinforced concrete buildings, focusing on seven buildings retrofit with various motivations and strategies. The seismic response of these buildings was nonlinearly simulated, and functional recovery was probabilistically assessed. The results show that retrofits targeting life safety may or may not achieve functional recovery goals. Achieving functional recovery depends especially on the reduction of drift demands and collapse probability. However, the acceleration increase associated with many retrofits can increase function loss due to the criticality of acceleration-sensitive nonstructural components if such components are not retrofitted. We also examine other performance metrics, that is, economic losses and immediate occupancy limits of ASCE/SEI 41, showing that these provide imprecise, and in the case of the immediate occupancy conservative, proxies for functional recovery.
期刊介绍:
Earthquake Spectra, the professional peer-reviewed journal of the Earthquake Engineering Research Institute (EERI), serves as the publication of record for the development of earthquake engineering practice, earthquake codes and regulations, earthquake public policy, and earthquake investigation reports. The journal is published quarterly in both printed and online editions in February, May, August, and November, with additional special edition issues.
EERI established Earthquake Spectra with the purpose of improving the practice of earthquake hazards mitigation, preparedness, and recovery — serving the informational needs of the diverse professionals engaged in earthquake risk reduction: civil, geotechnical, mechanical, and structural engineers; geologists, seismologists, and other earth scientists; architects and city planners; public officials; social scientists; and researchers.