一类无界环境中定向聚合物弱无序相的矩表征

IF 0.5 4区 数学 Q4 STATISTICS & PROBABILITY
Ryoki Fukushima, Stefan Junk
{"title":"一类无界环境中定向聚合物弱无序相的矩表征","authors":"Ryoki Fukushima, Stefan Junk","doi":"10.1214/23-ecp545","DOIUrl":null,"url":null,"abstract":"For a directed polymer model in random environment, a characterization of the weak disorder phase in terms of the moment of the renormalized partition function has been proved in [S. Junk: Communications in Mathematical Physics 389, 1087–1097 (2022)]. We extend this characterization to a large class of unbounded environments which includes many commonly used distributions.","PeriodicalId":50543,"journal":{"name":"Electronic Communications in Probability","volume":"17 1","pages":"0"},"PeriodicalIF":0.5000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Moment characterization of the weak disorder phase for directed polymers in a class of unbounded environments\",\"authors\":\"Ryoki Fukushima, Stefan Junk\",\"doi\":\"10.1214/23-ecp545\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"For a directed polymer model in random environment, a characterization of the weak disorder phase in terms of the moment of the renormalized partition function has been proved in [S. Junk: Communications in Mathematical Physics 389, 1087–1097 (2022)]. We extend this characterization to a large class of unbounded environments which includes many commonly used distributions.\",\"PeriodicalId\":50543,\"journal\":{\"name\":\"Electronic Communications in Probability\",\"volume\":\"17 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Electronic Communications in Probability\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1214/23-ecp545\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electronic Communications in Probability","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1214/23-ecp545","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 2

摘要

对于随机环境下的定向聚合物模型,在[S]中证明了用重归一化配分函数的矩来表征弱无序相。垃圾通讯:数学物理[j].中国科学:自然科学版,2004,22(5):557 - 557。我们将这种特征扩展到大量的无界环境,其中包括许多常用的发行版。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Moment characterization of the weak disorder phase for directed polymers in a class of unbounded environments
For a directed polymer model in random environment, a characterization of the weak disorder phase in terms of the moment of the renormalized partition function has been proved in [S. Junk: Communications in Mathematical Physics 389, 1087–1097 (2022)]. We extend this characterization to a large class of unbounded environments which includes many commonly used distributions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Electronic Communications in Probability
Electronic Communications in Probability 工程技术-统计学与概率论
CiteScore
1.00
自引率
0.00%
发文量
38
审稿时长
6-12 weeks
期刊介绍: The Electronic Communications in Probability (ECP) publishes short research articles in probability theory. Its sister journal, the Electronic Journal of Probability (EJP), publishes full-length articles in probability theory. Short papers, those less than 12 pages, should be submitted to ECP first. EJP and ECP share the same editorial board, but with different Editors in Chief.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信