{"title":"准爱因斯坦流形承认共形向量场","authors":"Rahul Poddar, S. Balasubramanian, Ramesh Sharma","doi":"10.4064/cm8903-6-2023","DOIUrl":null,"url":null,"abstract":"We study an $m$-quasi-Einstein manifold $(M,g,f,\\lambda )$ with finite $m$, and a non-homothetic conformal vector field $U$ that leaves the potential vector field and the scalar curvature both invariant, and show that either $M$ is trivial, or $U$ is Kill","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Quasi-Einstein manifolds admitting conformal vector fields\",\"authors\":\"Rahul Poddar, S. Balasubramanian, Ramesh Sharma\",\"doi\":\"10.4064/cm8903-6-2023\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study an $m$-quasi-Einstein manifold $(M,g,f,\\\\lambda )$ with finite $m$, and a non-homothetic conformal vector field $U$ that leaves the potential vector field and the scalar curvature both invariant, and show that either $M$ is trivial, or $U$ is Kill\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4064/cm8903-6-2023\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4064/cm8903-6-2023","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
We study an $m$-quasi-Einstein manifold $(M,g,f,\lambda )$ with finite $m$, and a non-homothetic conformal vector field $U$ that leaves the potential vector field and the scalar curvature both invariant, and show that either $M$ is trivial, or $U$ is Kill