三级平衡市场中住宅蓄电池需求响应的潜力

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Tomoshi Otsuki, Daiki Kiribuchi, Chihiro Kasai
{"title":"三级平衡市场中住宅蓄电池需求响应的潜力","authors":"Tomoshi Otsuki, Daiki Kiribuchi, Chihiro Kasai","doi":"10.1541/ieejjia.22007327","DOIUrl":null,"url":null,"abstract":"The recent increase in residential photovoltaic (PV) power generation has become a major factor in the electricity supply instability. As a result, power balancing at the distribution level is becoming increasingly important. In Japan, storage batteries installed in residential homes along with PV systems has reached nearly 3GW and are expected to contribute to the power system stability. In this paper, we propose a method for a group of residential consumers to participate in the balancing market by managing their total meter value to match the target power. This method consists of the following two stages: bid volume optimization, which optimizes the bid volume based on the past behavior of the consumers, and demand response (DR) dispatch optimization, which quickly determines the dispatch of charging and discharging requests every 5min when DR is requested. Evaluation simulations based on the actual 1-min power data and consumer response model showed that, by aggregating 1600 consumers, the success criteria of the balancing market can be met. In other words, the total metered power in 1-min and 5-min intervals can be controlled within ±10% of the bid volume against the target power. From these experiments we have shown that the aggregation of as large as 1600 residential consumers has the potential to participate in the balancing market.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Potential of Residential Storage Battery Demand Response in Tertiary Balancing Market\",\"authors\":\"Tomoshi Otsuki, Daiki Kiribuchi, Chihiro Kasai\",\"doi\":\"10.1541/ieejjia.22007327\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The recent increase in residential photovoltaic (PV) power generation has become a major factor in the electricity supply instability. As a result, power balancing at the distribution level is becoming increasingly important. In Japan, storage batteries installed in residential homes along with PV systems has reached nearly 3GW and are expected to contribute to the power system stability. In this paper, we propose a method for a group of residential consumers to participate in the balancing market by managing their total meter value to match the target power. This method consists of the following two stages: bid volume optimization, which optimizes the bid volume based on the past behavior of the consumers, and demand response (DR) dispatch optimization, which quickly determines the dispatch of charging and discharging requests every 5min when DR is requested. Evaluation simulations based on the actual 1-min power data and consumer response model showed that, by aggregating 1600 consumers, the success criteria of the balancing market can be met. In other words, the total metered power in 1-min and 5-min intervals can be controlled within ±10% of the bid volume against the target power. From these experiments we have shown that the aggregation of as large as 1600 residential consumers has the potential to participate in the balancing market.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2023-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1541/ieejjia.22007327\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1541/ieejjia.22007327","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 1

摘要

近年来,居民光伏发电的增加已成为电力供应不稳定的主要因素。因此,配电层面的电力平衡变得越来越重要。在日本,与光伏系统一起安装在住宅中的蓄电池已接近3GW,预计将为电力系统的稳定性做出贡献。在本文中,我们提出了一种方法,让一组居民消费者通过管理他们的总电表值来匹配目标功率来参与平衡市场。该方法包括投标量优化和DR (demand response)调度优化两个阶段,投标量优化是根据用户过去的行为对投标量进行优化,DR (demand response)调度优化是在有DR请求时,快速确定每5min的充放电请求调度。基于实际1分钟功率数据和消费者响应模型的评估模拟表明,通过聚合1600个消费者,可以满足平衡市场的成功标准。换句话说,1分钟和5分钟间隔内的总计量功率可以控制在投标体积对目标功率的±10%以内。从这些实验中,我们已经表明,多达1600个住宅消费者的聚集具有参与平衡市场的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Potential of Residential Storage Battery Demand Response in Tertiary Balancing Market
The recent increase in residential photovoltaic (PV) power generation has become a major factor in the electricity supply instability. As a result, power balancing at the distribution level is becoming increasingly important. In Japan, storage batteries installed in residential homes along with PV systems has reached nearly 3GW and are expected to contribute to the power system stability. In this paper, we propose a method for a group of residential consumers to participate in the balancing market by managing their total meter value to match the target power. This method consists of the following two stages: bid volume optimization, which optimizes the bid volume based on the past behavior of the consumers, and demand response (DR) dispatch optimization, which quickly determines the dispatch of charging and discharging requests every 5min when DR is requested. Evaluation simulations based on the actual 1-min power data and consumer response model showed that, by aggregating 1600 consumers, the success criteria of the balancing market can be met. In other words, the total metered power in 1-min and 5-min intervals can be controlled within ±10% of the bid volume against the target power. From these experiments we have shown that the aggregation of as large as 1600 residential consumers has the potential to participate in the balancing market.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信