{"title":"关于线上鞅扩散之间的特定相对熵","authors":"Julio Backhoff-Veraguas, Clara Unterberger","doi":"10.1214/23-ecp548","DOIUrl":null,"url":null,"abstract":"The specific relative entropy, introduced in the Wiener space setting by N. Gantert, allows to quantify the discrepancy between the laws of potentially mutually singular measures. It appears naturally as the large deviations rate function in a randomized version of Donsker’s invariance principle, as well as in a novel transport-information inequality recently derived by H. Föllmer. A conjecture, put forward by the aforementioned authors, concerns a closed form expression for the specific relative entropy between continuous martingale laws in terms of their quadratic variations. We provide a first partial result in this direction, by establishing this conjecture in the case of well-behaved martingale diffusions on the line.","PeriodicalId":50543,"journal":{"name":"Electronic Communications in Probability","volume":"1 1","pages":"0"},"PeriodicalIF":0.5000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"On the specific relative entropy between martingale diffusions on the line\",\"authors\":\"Julio Backhoff-Veraguas, Clara Unterberger\",\"doi\":\"10.1214/23-ecp548\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The specific relative entropy, introduced in the Wiener space setting by N. Gantert, allows to quantify the discrepancy between the laws of potentially mutually singular measures. It appears naturally as the large deviations rate function in a randomized version of Donsker’s invariance principle, as well as in a novel transport-information inequality recently derived by H. Föllmer. A conjecture, put forward by the aforementioned authors, concerns a closed form expression for the specific relative entropy between continuous martingale laws in terms of their quadratic variations. We provide a first partial result in this direction, by establishing this conjecture in the case of well-behaved martingale diffusions on the line.\",\"PeriodicalId\":50543,\"journal\":{\"name\":\"Electronic Communications in Probability\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Electronic Communications in Probability\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1214/23-ecp548\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electronic Communications in Probability","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1214/23-ecp548","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
On the specific relative entropy between martingale diffusions on the line
The specific relative entropy, introduced in the Wiener space setting by N. Gantert, allows to quantify the discrepancy between the laws of potentially mutually singular measures. It appears naturally as the large deviations rate function in a randomized version of Donsker’s invariance principle, as well as in a novel transport-information inequality recently derived by H. Föllmer. A conjecture, put forward by the aforementioned authors, concerns a closed form expression for the specific relative entropy between continuous martingale laws in terms of their quadratic variations. We provide a first partial result in this direction, by establishing this conjecture in the case of well-behaved martingale diffusions on the line.
期刊介绍:
The Electronic Communications in Probability (ECP) publishes short research articles in probability theory. Its sister journal, the Electronic Journal of Probability (EJP), publishes full-length articles in probability theory. Short papers, those less than 12 pages, should be submitted to ECP first. EJP and ECP share the same editorial board, but with different Editors in Chief.