连续噪声数据中Hurst参数的估计

IF 1 4区 数学 Q3 STATISTICS & PROBABILITY
Pavel Chigansky, Marina Kleptsyna
{"title":"连续噪声数据中Hurst参数的估计","authors":"Pavel Chigansky, Marina Kleptsyna","doi":"10.1214/23-ejs2156","DOIUrl":null,"url":null,"abstract":"This paper addresses the problem of estimating the Hurst exponent of the fractional Brownian motion from continuous time noisy sample. When the Hurst parameter is greater than 3∕4, consistent estimation is possible only if either the length of the observation interval increases to infinity or intensity of the noise decreases to zero. The main result is a proof of the Local Asymptotic Normality (LAN) of the model in these two regimes which reveals the optimal minimax estimation rates.","PeriodicalId":49272,"journal":{"name":"Electronic Journal of Statistics","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Estimation of the Hurst parameter from continuous noisy data\",\"authors\":\"Pavel Chigansky, Marina Kleptsyna\",\"doi\":\"10.1214/23-ejs2156\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper addresses the problem of estimating the Hurst exponent of the fractional Brownian motion from continuous time noisy sample. When the Hurst parameter is greater than 3∕4, consistent estimation is possible only if either the length of the observation interval increases to infinity or intensity of the noise decreases to zero. The main result is a proof of the Local Asymptotic Normality (LAN) of the model in these two regimes which reveals the optimal minimax estimation rates.\",\"PeriodicalId\":49272,\"journal\":{\"name\":\"Electronic Journal of Statistics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Electronic Journal of Statistics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1214/23-ejs2156\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electronic Journal of Statistics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1214/23-ejs2156","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 1

摘要

研究了从连续时间噪声样本中估计分数阶布朗运动的赫斯特指数的问题。当赫斯特参数大于3∕4时,只有当观测区间的长度增大到无穷大或噪声强度减小到零时,才有可能进行一致估计。主要结果是证明了模型在这两种情况下的局部渐近正态性,揭示了最优的极大极小估计率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Estimation of the Hurst parameter from continuous noisy data
This paper addresses the problem of estimating the Hurst exponent of the fractional Brownian motion from continuous time noisy sample. When the Hurst parameter is greater than 3∕4, consistent estimation is possible only if either the length of the observation interval increases to infinity or intensity of the noise decreases to zero. The main result is a proof of the Local Asymptotic Normality (LAN) of the model in these two regimes which reveals the optimal minimax estimation rates.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Electronic Journal of Statistics
Electronic Journal of Statistics STATISTICS & PROBABILITY-
CiteScore
1.80
自引率
9.10%
发文量
100
审稿时长
3 months
期刊介绍: The Electronic Journal of Statistics (EJS) publishes research articles and short notes on theoretical, computational and applied statistics. The journal is open access. Articles are refereed and are held to the same standard as articles in other IMS journals. Articles become publicly available shortly after they are accepted.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信